ÔĶÁÏÂÁвÄÁÏ£¬»Ø´ðÎÊÌ⣮

²ÄÁÏ£º

¹ÉƱÊг¡£¬Âò¡¢Âô¹ÉƱ¶¼Òª·Ö±ð½»ÄÉÓ¡»¨Ë°µÈÓйØË°·Ñ£®ÒÔ»¦ÊйɵĹÉƱ½»Ò×ΪÀý£¬³ý³É±¾Í⻹Ҫ½»ÄÉ£º

¢ÙÓ¡»¨Ë°£º°´³É½»½ð¶îµÄ¼ÆË㣻

¢Ú¹ý»§·Ñ£º°´³É½»½ð¶îµÄ¼ÆË㣻

¢ÛÓ¶½ð£º°´²»¸ßÓڳɽ»½ð¶îµÄ¼ÆË㣨±¾Ìâ°´¼ÆË㣩£¬²»×ã5Ôª°´5Ôª¼ÆË㣮

Àý£ºÄ³Í¶×ÊÕßÒÔÿ¹É5.00ÔªµÄ¼Û¸ñÔÚ»¦ÊйÉÖÐÂòÈë¹ÉƱ¡°½ð±­Æû³µ¡±1000¹É£¬ÒÔÿ¹É5.50ÔªµÄ¼Û¸ñÈ«²¿Âô³ö£¬¹²Ó¯Àû¶àÉÙ£¿

½â£ºÖ±½Ó³É±¾£º£¨Ôª£©£»

Ó¡»¨Ë°£º£¨Ôª£©£»

¹ý»§·Ñ£º£¨Ôª£©£»

Ó¶½ð£º£¨Ôª£©£¬

£¬Ó¶½ðΪ31.50Ôª£®

×ÜÖ§³ö£º£¨Ôª£©£®

×ÜÊÕÈ룺£¨Ôª£©£®

ËùÒÔÕâ´Î½»Ò×¹²Ó¯Àû£º£¨Ôª£©£®

ÎÊÌ⣺

£¨1£©Ð¡Íõ¶Ô´ËºÜ¸ÐÐËȤ£¬ÒÔÿ¹É5.00ÔªµÄ¼Û¸ñÂòÈëÒÔÉϹÉƱ100¹É£¬ÒÔÿ¹É5.50ÔªµÄ¼Û¸ñÈ«²¿Âô³ö£¬ÔòËûÓ¯ÀûΪ      Ôª£®

£¨2£©Ð¡ÕÅÒÔÿ¹ÉÔªµÄ¼Û¸ñÂòÈëÒÔÉϹÉƱ1000¹É£¬¹ÉÊв¨¶¯´ó£¬Ëû×¼±¸ÔÚ²»¿÷²»Ó¯Ê±Âô³ö£®ÇëÄã°ïËû¼ÆËã³öÂô³öµÄ¼Û¸ñÿ¹ÉÊÇ           Ôª£¨ÓõĴúÊýʽ±íʾ£©£¬Óɴ˿ɵÃÂô³ö¼Û¸ñÓëÂòÈë¼Û¸ñÏà±ÈÖÁÉÙÒªÉÏÕÇ       ²Å²»¿÷£¨½á¹û±£ÁôÈý¸öÓÐЧÊý×Ö£©£®

£¨3£©Ð¡ÕÅÔÙÒÔÿ¹É5.00ÔªµÄ¼Û¸ñÂòÈëÒÔÉϹÉƱ1000¹É£¬×¼±¸Ó¯Àû1000Ԫʱ²ÅÂô³ö£¬ÇëÄã°ïËû¼ÆËãÂô³öµÄ¼Û¸ñÿ¹ÉÊǶàÉÙÔª£¿£¨¾«È·µ½0.01Ôª£©

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁϺó»Ø´ðÎÊÌ⣺
ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªxÖáÉϵÄÁ½µãA£¨x1£¬0£©£¬B£¨x2£¬0£©µÄ¾àÀë¼Ç×÷|AB|=|x1-x2|£¬Èç¹ûA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇƽÃæÉÏÈÎÒâÁ½µã£¬ÎÒÃÇ¿ÉÒÔͨ¹ý¹¹ÔìÖ±½ÇÈý½ÇÐÎÀ´ÇóA¡¢B¼äµÄ¾àÀ룮
Èçͼ£¬¹ýA¡¢BÁ½µã·Ö±ðÏòxÖá¡¢yÖá×÷´¹ÏßAM1¡¢AN1ºÍBM2¡¢BN2£¬´¹×ã·Ö±ð¼Ç×÷M1£¨x1£¬0£©£¬N1£¨0£¬y1£©¡¢M2£¨x2£¬0£©£¬N2£¨0£¬y2£©£¬Ö±ÏßAN1ÓëBM2½»ÓÚQµã£®
ÔÚRt¡÷ABQÖУ¬|AB|2=|AQ|2+|QB|2£¬¡ß|AQ|=|M1M2|=|x2-x1|£¬|BQ|=|N1N2|=|y2-y1|
¡à|AB|2=|x2-x1|2+|y2-y1|2Óɴ˵ÃÈÎÒâÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ö®¼äµÄ¾àÀ빫ʽ£º|AB|=
|x2-x1|2+|y2-y1|2

Èç¹ûijԲµÄÔ²ÐÄΪ£¨0£¬0£©£¬°ë¾¶Îªr£®ÉèP£¨x£¬y£©ÊÇÔ²ÉÏÈÎÒ»µã£¬¸ù¾Ý¡°Ô²ÉÏÈÎÒ»µãµ½¶¨µã£¨Ô²ÐÄ£©µÄ¾àÀ붼µÈÓÚ¶¨³¤£¨°ë¾¶£©¡±£¬ÎÒÃDz»Äѵõ½|PO|=r£¬¼´
(x-0)2+(y-0)2
=r
£¬ÕûÀíµÃ£ºx2+y2=r2£®ÎÒÃdzƴËʽΪԲÐÄÔÚ¾«Ó¢¼Ò½ÌÍøÔ­µã£¬°ë¾¶ÎªrµÄÔ²µÄ·½³Ì£®
£¨1£©Ö±½ÓÓ¦ÓÃƽÃæÄÚÁ½µã¼ä¾àÀ빫ʽ£¬ÇóµãA£¨1£¬-3£©£¬B£¨-2£¬1£©Ö®¼äµÄ¾àÀ룻
£¨2£©Èç¹ûÔ²ÐÄÔÚµãP£¨2£¬3£©£¬°ë¾¶Îª3£¬Çó´ËÔ²µÄ·½³Ì£®
£¨3£©·½³Ìx2+y2-12x+8y+36=0ÊÇ·ñÊÇÔ²µÄ·½³Ì£¿Èç¹ûÊÇ£¬Çó³öÔ²ÐÄ×ø±êÓë°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨2013•Ê®ÑßÄ£Ä⣩ÔĶÁÏÂÁвÄÁϺó»Ø´ðÎÊÌ⣺
¶ÁÒ»¶Á£ºÊ½×Ó¡°1+2+3+4+5+¡­+100¡±±íʾ´Ó1¿ªÊ¼µÄ100¸öÁ¬Ðø×ÔÈ»ÊýµÄºÍ£®ÓÉÓÚÉÏÊöʽ×ӱȽϳ¤£¬ÊéдҲ²»·½±ã£¬ÎªÁ˼ò±ãÆð¼û£¬ÎÒÃǿɽ«¡°1+2+3+4+5+¡­+100¡±±íʾΪ
100
n=1
n
£¬ÕâÀï¡°¡Æ ¡±ÊÇÇóºÍ·ûºÅ£¬ÀýÈ磺¡°1+3+5+7+9+¡­+99¡±£¨¼´´Ó1¿ªÊ¼µÄ100ÒÔÄÚµÄÁ¬ÐøÆæÊýµÄºÍ£©¿É±íʾΪ
50
n=1
(2n-1)
£®
ͨ¹ý¶ÔÒÔÉϲÄÁϵÄÔĶÁ£¬Çë½â´ðÏÂÁÐÎÊÌ⣺
¢Ù2+4+6+8+10+¡­+100£¨¼´´Ó2¿ªÊ¼µÄ100ÒÔÄÚµÄÁ¬ÐøżÊýµÄºÍ£©ÓÃÇóºÍ·ûºÅ¿É±íʾΪ
50
n=1
2n
50
n=1
2n
£»
¢Ú¼ÆËã
50
n=1
(n2-1)
£º
12+22+32+¡­+502-50
12+22+32+¡­+502-50
=
42875
42875
£®£¨Ìîд×îºóµÄ¼ÆËã½á¹û£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£¬»Ø´ðÎÊÌ⣮
²ÄÁÏ£º
¹ÉƱÊг¡£¬Âò¡¢Âô¹ÉƱ¶¼Òª·Ö±ð½»ÄÉÓ¡»¨Ë°µÈÓйØË°·Ñ£®ÒÔ»¦ÊÐA¹ÉµÄ¹ÉƱ½»Ò×ΪÀý£¬³ý³É±¾Í⻹Ҫ½»ÄÉ£º
¢ÙÓ¡»¨Ë°£º°´³É½»½ð¶îµÄ0.1%¼ÆË㣻
¢Ú¹ý»§·Ñ£º°´³É½»½ð¶îµÄ0.1%¼ÆË㣻
¢ÛÓ¶½ð£º°´²»¸ßÓڳɽ»½ð¶îµÄ0.3%¼ÆË㣨±¾Ìâ°´0.3%¼ÆË㣩£¬²»×ã5Ôª°´5Ôª¼ÆË㣮
Àý£ºÄ³Í¶×ÊÕßÒÔÿ¹É5.00ÔªµÄ¼Û¸ñÔÚ»¦ÊÐA¹ÉÖÐÂòÈë¹ÉƱ¡°½ð±­Æû³µ¡±1000¹É£¬ÒÔÿ¹É5.50ÔªµÄ¼Û¸ñÈ«²¿Âô³ö£¬¹²Ó¯Àû£¨¡¡¡¡£©Ôª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£¬»Ø´ðÎÊÌ⣮
¡¾²ÄÁÏ1¡¿³Ë»ýÊÇ1µÄÁ½¸öÊý»¥Îªµ¹Êý£¬¼´
a
b
Óë
b
a
»¥Îªµ¹Êý£¬Ò²¾ÍÊÇ˵£¬a¡Âb=x£®Ôòb¡Âa=
1
x
£®
¡¾²ÄÁÏ2¡¿³Ë·¨·ÖÅäÂÉ£ºÒ»¸öÊýͬÁ½¸öÊýµÄºÍÏà³Ë£¬µÈÓÚ°ÑÕâ¸öÊý·Ö±ðͬÕâÁ½¸öÊýÏà³Ë£¬ÔÙ°ÑËùµÃµÄ»ýÏà¼Ó£¬¼´£¨a+b£©c=ac+bc£®
ÀûÓÃÉÏÊö²ÄÁÏ£¬ÇɽâÏÂÌ⣺(-
1
30
)¡Â(
2
3
-
1
10
+
1
6
-
2
5
)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨1£©ÔĶÁÒÔÏÂÄÚÈÝ£º
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
¡­

¢Ù¸ù¾ÝÒÔÉϹæÂÉ£¬¿ÉµÃ£¨x-1£©£¨xn+xn-1+xn-2+¡­+x+1£©=
xn+1-1
xn+1-1
£¨nΪÕýÕûÊý£©£»
¢Ú¸ù¾ÝÕâÒ»¹æÂÉ£¬¼ÆË㣺1+2+22+23+24+¡­22011+22012+22013=
22014-1
22014-1
£®
£¨2£©ÔĶÁÏÂÁвÄÁÏ£¬»Ø´ðÎÊÌ⣺
¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=a+
1
a
µÄ½âÊÇx1=a£¬x2=
1
a
£»x+
2
x
=a+
2
a
µÄ½âÊÇx1=a£¬x2=
2
a
£»x+
3
x
=a+
3
a
µÄ½âÊÇx1=a£¬x2=
3
a
£»
¡­
¢ÙÇë¹Û²ìÉÏÊö·½³ÌÓë½âµÄÌØÕ÷£¬²ÂÏë¹ØÓÚxµÄ·½³Ìx+
m
x
=a+
m
a
(m¡Ù0)
µÄ½â£»
¢ÚÇëÄãд³ö¹ØÓÚxµÄ·½³Ìx+
2
x-3
=m+
2
m-3
µÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸