精英家教网 > 初中数学 > 题目详情
16.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG..若AB=8,BC=16,则△AEG的面积为24.

分析 先根据折叠的性质求出DG=EG,AE的值,再根据勾股定理可得AG的值,最后根据三角形的面积公式计算.

解答 解:设AG=x,
根据折叠的性质,有DG=EG=16-x,AE=AB=8,
根据勾股定理可得64+(16-x)2=x2
解得x=10,
EG=16-x=6,
故△AEG的面积为$\frac{1}{2}$•AE•EG=$\frac{1}{2}$×8×6=24.
故答案为:24.

点评 本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于(  )
A.$\frac{20}{3}$B.$\frac{17}{4}$C.$\frac{16}{3}$D.$\frac{15}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.Rt△ABC中,∠C=90°,AC=6,BC=8,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是r=4.8或6<r≤8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长交AG于N.
(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;
(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;
(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S 关于时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下面资料:
$\frac{1}{1+\sqrt{2}}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1; 
 $\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;        
$\frac{1}{\sqrt{5}+2}$=$\frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)}$=$\sqrt{5}$-2.
试求:(1)$\frac{1}{\sqrt{7}+\sqrt{6}}$的值;
(2)$\frac{1}{3\sqrt{2}+\sqrt{17}}$的值;
(3)($\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2008}+\sqrt{2009}}$+$\frac{1}{\sqrt{2009}+\sqrt{2010}}$)•(1+$\sqrt{2010}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某型号飞机的机翼形状如图所示,AB∥CD,∠DAE=37°,∠CBE=45°,CD=1.4m,AB、CD之间的距离为5.1m.求AD、AB的长.
(参考数据:sin37°=cos53°≈$\frac{3}{5}$,cos37°=sin53°≈$\frac{4}{5}$,tan37°≈$\frac{3}{4}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,△ABC的顶点都在方格纸的格点上.将△ABC向左平移2格,再向上平移4格.请在图中画出平移后的△A′B′C′,再在图中画出△A′B′C′的高C′D′、中线A′E,若S△BCP=S△ACB,P为异于点B的格点,则点P的个数为4个.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图(1),在边长为a的大正方形上剪去一个边长为b的小正方形,可以拼出图(2)所示图形,上述过程可以验证等式(  )
A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+b)2-(a-b)2=4ab

查看答案和解析>>

同步练习册答案