分析 过点P作MN∥BC,分别交AB、CD于点M、N,根据矩形的性质和直角三角形的性质,可证明△QNP≌△PMB,可证明PQ=PB,设AP=x,结合PQ=PB可分别表示出AM、BM、CQ和PN,可表示出△PBC和△PCQ的面积,从而表示出四边形PBCQ的面积,从而得到y与x的关系式.
解答 解:过点P作MN∥BC,分别交AB、CD于点M、N,如图1,
则四边形AMND和四边形BCNM都是矩形,△AMP和△CNP都是等腰三角形,
∴NP=NC=MB.
∵∠BPQ=90°,
∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°,
∴∠QPN=∠PBM.
又∵∠QNP=∠PMB=90°
在△QNP和△PMB中,
$\left\{\begin{array}{l}{∠QPN=∠PBM}\\{NP=MB}\\{∠QNP=∠PMB}\end{array}\right.$,
∴△QNP≌△PMB(ASA),
∴NQ=MP;
设AP=x,则AM=MP=NQ=DN=$\frac{\sqrt{2}}{2}$x,BM=PN=CN=1-$\frac{\sqrt{2}}{2}$x,
∴CQ=CD-DQ=1-2×$\frac{\sqrt{2}}{2}$x=1-$\sqrt{2}$x
∴S△PBC=$\frac{1}{2}$BC•BM=$\frac{1}{2}$×1×(1-$\frac{\sqrt{2}}{2}$x)=$\frac{1}{2}$-$\frac{\sqrt{2}}{2}$x,
S△PCQ=$\frac{1}{2}$CQ•PN=$\frac{1}{2}$×(1-$\sqrt{2}$x)(1-$\frac{\sqrt{2}}{2}$x)=$\frac{1}{2}$-$\frac{3\sqrt{2}}{4}$x+$\frac{1}{2}$x2,
∴S四边形PBCQ=S△PBC+S△PCQ=$\frac{1}{2}$x2-$\sqrt{2}$x+1,
即y=$\frac{1}{2}$x2-$\sqrt{2}$x+1(0≤x<$\frac{\sqrt{2}}{2}$).
点评 本题主要考查四边形的综合应用,涉及正方形的性质、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质和勾股定理等知识.构造三角形全等和用x分别表示出△PBC和△PCQ的面积是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com