精英家教网 > 初中数学 > 题目详情
11、如图,在梯形ABCD中,AD∥BC,中位线EF与对角线BD交于点G.若EG﹕GF=2﹕3,且AD=4,则BC的长是(  )
分析:先设EG=2x,则FG=3x,因为EF是梯形中位线,那么EF∥AD∥BC,且E、F是两腰中点,利用平行线分线段成比定理推论可证BG:DG=BE:AE,那么G是BD中点,再利用三角形中位线定理,在△ABD中可求x,从而可求BC.
解答:解:设EG=2x,则FG=3x,
∵EF是梯形中位线,
∴EF∥AD∥BC,E、F是AB、CD中点,
∴G是BD的中点,
∴EG是△ABD的中位线,
FG是△BCD的中位线,
∴AD=2EG=4x,BC=2GF=6x,
又∵AD=4,
∴x=1,
∴BC=6.
故选A.
点评:本题利用了梯形中位线定理、平行线分线段成比例定理的推论、三角形中位线定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案