精英家教网 > 初中数学 > 题目详情
(2013•滨州)如图,在△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,EF⊥AC,垂足为F.求证:直线EF是⊙O的切线.
分析:连接OE,DE,则根据圆周角定理可得:DE⊥BC,由AB=AC,可得∠C=∠B,继而可得∠CEF+∠OEB=90°,由切线的判定定理即可得出结论.
解答:解:方法一:
连接OE,DE,
∵BD是⊙O的直径,
∴∠DEB=90°,
∵AB=AC,
∴∠ABC=∠C,
又∵OB=OE,
∴∠ABC=∠OEB,
∵∠FEC+∠C=90°,
∴∠FEC+∠OEB=90°,
∴OE⊥EF,
∵OE是⊙O半径,
∴直线EF是⊙O的切线.

方法二:连接OE,
∵AB=AC,
∴∠ABC=∠C,
又∵OB=OE,
∴∠ABC=∠OEB,
∴∠C=∠OEB,
∴EO∥AC,
∵∠AFE=90°,
∴∠OEF=90°,
∴直线EF是⊙O的切线.
点评:本题考查了切线的判定、圆周角定理及等腰三角形的性质,关键是作出辅助线,利用等角代换得出∠OEF为直角,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•滨州)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:
①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.
其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨州)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(-1,0).则下面的四个结论:
①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>2.
其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨州)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).

查看答案和解析>>

同步练习册答案