精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC中,AC=8,BC=6,∠C=90°,分别以AB、BC、AC为直径作三个半圆,那么阴影部分的面积为    .(平方单位)
【答案】分析:阴影部分面积可以看成是以AC、BC为直径的两个半圆的面积加上一个直角三角形ABC的面积减去一个以AB为直径的半圆的面积.
解答:解:S阴影=直径为AC的半圆的面积+直径为BC的半圆的面积+S△ABC-直径为AB的半圆的面积
=π+π+AC×BC-π
=π(AC)2+π(BC)2-π(AB)2+AC×BC
=π(AC2+BC2-AB2)+AC×BC
=AC×BC
=×6×8
=24.
点评:阴影部分的面积可以看作是几个规则图形的面积的和或差.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案