精英家教网 > 初中数学 > 题目详情
如图,二次函数y=ax2+bx+c图象的一部分,其中对称轴为x=﹣1,且过(﹣3,0),下列说法:①abc<0,②2a<b,③4a+2b+c=0,④若(﹣5,y1),(5,y2)是抛物线上的点,则y1<y2,其中说法正确的有(  )
A.4个 B.3个 C.2个 D.1个
C.

试题分析:根据图象分别求出a、b、c的符号,即可判断①,根据对称轴求出b=2a,代入2a﹣b即可判断②,把x=2代入二次函数的解析式,再根据图象即可判断③,求出点(﹣5,y1)关于直线x=﹣1的对称点的坐标,根据对称轴即可判断y1和y2的大小.
∵二次函数的图象开口向上,
∴a>0,
∵二次函数的图象交y轴的负半轴于一点,
∴c<0,
∵对称轴是中线x=﹣1,
∴-=﹣1,∴b=2a>0,
∴abc<0,∴①正确;
∵b=2a,
∴2a﹣b=0,∴②错误;
把x=2代入y=ax2+bx+c得:y=4a+2b+c,
从图象可知,当x=2时y<0,
即4a+2b+c<0,∴③错误;
∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),
又∵当x>﹣1时,y随x的增大而增大,3<5,
∴y1<y2,∴④正确;
即正确的有2个,
故选C.
考点: 1.二次函数图象与系数的关系;2.二次函数图象上点的坐标特征.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某区政府大力扶持大学生创业.李刚在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李刚每月获得利润为w(元),当销售单价定为每台多少元时,每月可获得最大利润?
(2)如果李刚想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李刚想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的图象如图所示,给出下列说法:

>0;
=0;

④当时,函数y随x的增大而增大;
⑤当时,
其中,正确的说法有          .(请写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,抛物线过点,且与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.点D的坐标为,连接CA,CB,CD.

(1)求证:
(2)是第一象限内抛物线上的一个动点,连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出点E的坐标;
②连接CP,当△CDP的面积最大时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=(x+5)(2-x)图像的开口方向是________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的一部分如图所示,该抛物线在轴右侧部分与轴交点的坐标是(    ).
A.(0.5,0)B.(1,0)C.(2,0)D.(3,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图,①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1),其中结论正确的有(  )
A.③④B.③⑤C.③④⑤D.②③④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数图像的顶点坐标是(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:,则小球距离地面的最大高度是
A.1米B.5米C.6米D.7米

查看答案和解析>>

同步练习册答案