精英家教网 > 初中数学 > 题目详情
如图,抛物线的对称轴是直线x=,与x轴交于点A、B两点,与y轴交于点C,并且点A的坐标为(—1,0).

(1)求抛物线的解析式;
(2)过点C作CD//x轴交抛物线于点D,连接AD交y轴于点E,连接AC,设△AEC的面积为S1, △DEC的面积为S2,求S1:S2的值;
(3)点F坐标为(6,0),连接D,在(2)的条件下,点P从点E出发,以每秒3个单位长的速度沿E→C→D→F匀速运动;点Q从点F出发,以每秒2个单位长的速度沿F→A匀速运动,当其中一点到达终点时,另外一点也随之停止运动.若点P、Q同时出发,设运动时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是直角三角形?请直接写出所有符合条件的t值..
解:(1)
(2)
(3)当时,以D、P、Q为顶点的三角形是直角三角形。

试题分析:(1)由∵抛物线的对称轴是直线x=和经过点A(—1,0),得,解之即可得抛物线的解析式。
∵抛物线的对称轴是直线x=,∴①。
又∵抛物线经过点A(—1,0),∴②。
联立①②,解得
∴抛物线的解析式为
(2)根据相似三角形和等高三角形的性质,可得,从而,即S1:S2=
中令x=0得,∴C(0,4)。
∵抛物线的对称轴是直线x=,CD//x轴交抛物线于点D,∴D(3,4)。
又OA=1,CD=3,
∵CD//x轴,∴△AEO∽△DEC。∴③。
又∵△AEO和△AEC是两等高三角形,∴④。
③÷④,得,即S1:S2=
(3)分四种情况讨论:
①当点P在EC上运动,∠PDQ=900时,如图1,

过点D作DG⊥AB于G,则CD=3,PC= 3—3t,GD=4,QG=3—2t,
由△PCD∽△QGD得,即,解得
②当点P在CD上运动,∠PDQ=900时,如图2,

OQ=6—2t,CD=3,此时,OQDC是矩形。由OQ=CD,即6—2t=3解得
③当点P在CD上运动,∠QPD=900时,如图3,

OQ=6—2t,CP=3t—3,此时,OQPC是矩形。由OQ=CP,6—2t=3t—3解得
④当点P在DF上运动,∠QPD=900时,如图4,

由D(3,4),F(6,0),根据勾股定理可得DF=5。
过点D作DG⊥AB于G,则DF=5,GF=3, PF= 11—3t, QF=2t,
由△FPQ∽△FGD得,即,解得
综上所述,当时,以D、P、Q为顶点的三角形是直角三角形。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.

(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。

(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点。
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x轴于点C,交抛物线于点D.

(1)求该抛物线的解析式;
(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;
(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使?若存在,请直接写出d3的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x
﹣3
﹣2
﹣1
0
1
2
3
4
5
y
12
5
0
﹣3
﹣4
﹣3
0
5
12
给出了结论:
(1)二次函数有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A.3      B.2      C.1      D.0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数 (a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是
A.a>0B.b2-4ac≥0
C.x1<x0<x2D.a(x0-x1)( x0-x2)<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年四川绵阳4分)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<;④3|a|+|c|<2|b|.
其中正确的结论是   (写出你认为正确的所有结论序号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把二次函数配方成顶点式为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案