【题目】一个长方体木箱沿斜面下滑,当木箱下滑至如图所示位置时,AB=2m,已知木箱高BE=1m,斜面坡角为32°.(参考数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249)
(1)求点B到AC的距离.(精确到0.1m)
(2)求木箱端点E距地面AC的高度.(精确到0.1m)
【答案】(1)点B到AC的距离为1.1m;(2)木箱端点E距地面AC的高度为1.9m
【解析】
(1)作BH⊥AC与H.根据sin32°=计算即可;
(2)作EN⊥AC与N交AB与M.分别求出EM、MN即可;
解:(1)作BH⊥AC与H.
∵sin32°=,
∴BH=2×0.5299≈1.1(m).
∴点B到AC的距离为1.1m.
(2)作EN⊥AC与N交AB与M.
在Rt△EMB中,∠MEM=32°,
∴EM=≈1.18(m),
BM=EBtan32°≈0.62,
∴AM=AB﹣BM=0.38(m),
∴MN=AMsin32°≈0.73(m),
∴EN=EM+MN=1.18+0.73≈1.9(m).
∴木箱端点E距地面AC的高度为1.9m.
科目:初中数学 来源: 题型:
【题目】已知某二次函数图象的顶点坐标为(1,-4),且经过点C(0,-3)
(1)求这个二次函数的表达式;
(2)求图象与x轴交点A、B两点的坐标(A在点B的左边)及△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.
(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?
(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,AD=4,E在AB上,AE=2,HF是CE的垂直平分线,交CD的延长线于点F,连结EF交AD于点G,则的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知Rt△ABC中,∠ACB=90°,∠B=60°,BC=4,D为AB边上一点,且BD=3,将△BCD绕着点C顺时针旋转60°到△B′CD′,则AD′的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=5,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,和都是等腰直角三角形,,点P为射线BD,CE的交点.
求证:;
若,把绕点A旋转.
当时,求PB的长;
直接写出旋转过程中线段PB长的最大值与最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0(2)9a>3bc;(3)9a+b+c=0:(4)若方程a(x+1)(x﹣5)=﹣2的两根为x1和x2,且x1<x2,则x1<1<5<x2,其中正确的结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com