精英家教网 > 初中数学 > 题目详情
如图,△ABC中,点A的坐标为(0,-2),点C的坐标为(2,1),点B的坐标为(3,-1),要使△ACD与△ACB全等,那么符合条件的点D有
 
个.
考点:全等三角形的判定,坐标与图形性质
专题:
分析:根据全等三角形的判定方法结合坐标系得出符合题意的图形.
解答:解:如图所示:要使△ACD与△ACB全等,那么符合条件的点D有 3个.

故答案为:3.
点评:此题主要考查了全等三角形判定以及坐标与图形的性质,熟练利用全等三角形的判定得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

化简:
(1)3x2+2xy-4y2-(3xy-4y2+3x2);          
(2)4(x2-5x)-5(2x2+3x);
(3)(3a2-b2)-3(a2-2b2);
(4)2x-[2(x+3y)-3(x-2y)].

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图(1),在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E、G分别在AB、CD上,且AE=CG,连接CE交BG的延长线于F.
(1)求证:BG=CE,BF⊥CE.
(2)过图(1)中的点A作AH⊥CE,交CE的延长线于点H,交CD的延长线于点M,(如图2),找出图中与BE相等的线段,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠BAC=28°,以AB为直径的⊙O交AC于点D,DE∥CB,连接BD,若添加一个条件,使BC是⊙O的切线,则下列四个条件中不符合的是(  )
A、DE⊥AB
B、∠EDB=28°
C、∠ADE=∠ABD
D、OB=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:正方形ABCD沿EF折叠,A与H,B与G分别重合,求证:AK+CG=GK.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为手的示意图,从大拇指开始,按食指,中指,无名指,小指,再回到大拇指的顺序,依次数正整数1,2,3,4,5当数到2015时,对应的手指(  )
A、食指B、中指C、无名指D、小指

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有下列六个论断:①AC=CB,②∠A=∠B,③∠ACE=∠BCD,④CE=CD⑤∠E=∠D,⑥BE=AD.请以其中三个论断作为条件,编拟一个由三个条件能推出一个结论成立的真命题,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABD、△AEC都是等边三角形,AF⊥CD于F,AH⊥BE于H.
(1)求证:AF=AH.
(2)当BC不变,AB、AC变化时,EB与CD相交所成的角∠BGD的度数是否发生变化?若不变,求出∠BGD的度数.(只写结论,不写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点AB⊥BD于点B,ED⊥BD于点D,点C在BD上,且∠ACE=90°,AC=CE,AB=4,BC=6.
(1)线段AC=
 

(2)证明△ABC≌△?CDE;
(3)如果点P是线段BC上任意一点,问是否存在P使得点A、E、P构成一个直角三角形?若存在请求出BP的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案