分析 通过△ABE≌△DFE求得△ABE的面积为1,通过△FBC∽△FED,求得四边形BCDE的面积为3,然后根据?ABCD的面积=四边形BCDE的面积+△ABE的面积即可求得.
解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,AD=BC,
∵AB∥CD,
∴∠A=∠EDF,
在△ABE和△DFE中,$\left\{\begin{array}{l}{∠A=∠FDE}&{\;}\\{AE=DE}&{\;}\\{∠AEB=∠DEF}&{\;}\end{array}\right.$,
∴△ABE≌△DFE(ASA),
∵△DEF的面积为1,
∴△ABE的面积为1,
∵AD∥BC,
∴△FBC∽△FED,
∴$\frac{{S}_{△EFD}}{{S}_{△BCF}}$=($\frac{ED}{BC}$)2
∵AE=ED=$\frac{1}{2}$AD.
∴ED=$\frac{1}{2}$BC,
∴∴$\frac{{S}_{△EFD}}{{S}_{△BCF}}$=$\frac{1}{4}$,
∴四边形BCDE的面积为3,
∴?ABCD的面积=四边形BCDE的面积+△ABE的面积=4.
故答案为4.
点评 本题考查了平行四边形的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握三角形全等的性质和三角形相似的性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 同位角相等 | |
B. | 和已知直线平行的直线有且只有一条 | |
C. | 在平面内过一点有且只有一条直线垂直于已知直线 | |
D. | 在平面内过一点有且只有一条直线平行于已知直线 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | K、K1均为常值 | B. | K为常值,K1不为常值 | ||
C. | K不为常值,K1为常值 | D. | K、K1均不为常值 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1:2 | B. | 1:3 | C. | 1:4 | D. | 1:9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com