精英家教网 > 初中数学 > 题目详情

如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.
求:(1)cos∠F的值;(2)BE的长.

解:(1)连接OE,
∵DF切半圆于点E,
∴∠OEF=90°,
∵四边形ABCD为正方形,
∵∠OEF=∠DAF=90°,
∵∠F=∠F,
∴△OEF∽△DAF,
===
即AF=2EF,
又EF2=FB•FA=BF•2EF,
∴EF=2BF=8,AF=2EF=16,
∴AB=AF-BF=12,
FO=AB+BF=10.
cos∠F==

(2)连接AE,由△BEF∽△EAF,得===
设BE=k,则AE=2k,
根据AB是直径,故∠AEB=90°,
即AE2+BE2=AB2
得(2k)2+k2=122
解得k=
故BE=
分析:(1)解答此题的关键是由△OEF∽△DAF得出AF=2EF,再根据此数值求出EF和FO,然后即可求出cos∠F.
(2)由△BEF∽△EAF,和设BE=k,则AE=2k,即可求得BE.
点评:此题涉及的知识点较多,由相似形的判定与性质,勾股定理,正方形的性质等知识点,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=
12

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连接AO,如果AB=3,AO=2
2
,那么AC的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边和一直角边为边长向外作正方形,面积分别为169和25,则另一直角边的长度BC为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC各边为边长的正方形面积分别为S1、S2、S3,且S1+S2+S3=50,则AB=(  )

查看答案和解析>>

同步练习册答案