【题目】小张第一次用180元购买了8套儿童服装,以一定价格出售.如果以每套儿童服装80元的价格为标准,超出的记作整数,不足的记作负数,记录如下(单位:元):
请通过计算说明:
(1)小张卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?
(2)每套儿童服装的平均售价是多少元?
(3)小张第二次用第一次的进价再次购买900元的儿童服装,如果他预计第二次每套服装的平均售价75元,按他的预计第二次售价可获利多少元?
【答案】(1)当他卖完这八套儿童服装后是盈利了,盈利了元;(2)每套儿童服装的平均售价是元;(3)按他的预计第二次售价可获利元.
【解析】
(1)把所得的正负数相加,再同以55元售价售出的总价相加,求出买出的钱数,再同400元进行比较,可知赚了还是亏了,进而求出赚或亏的钱数;
(2)用售出的总价除以8可求出平均售价是多少元,据此解答.
(3)根据利润=售价-进价即可求得.
(1)(+12)+(13)+(+15)+(+11)+(17)+(-11)+0+(13)= 16.
80×8 16=64016=624(元)
624>180,所以赚钱
624180=444(元)
答:当他卖完这八套儿童服装后是盈利了,盈利了元;
(2)624÷8=78(元)
答:每套儿童服装的平均售价是78元.
(3)每套衣服的进价为:180÷8=22.5元,
第二次可以购进服装900÷22.5=40套,
答:按他的预计第二次售价可获利元.
科目:初中数学 来源: 题型:
【题目】如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).
(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;
(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一张长方形的纸对折一次,然后沿折痕剪开,可以将这张纸分为两部分:如图2,如果对折两次,然后沿最后一次的折痕剪开,可以将这张纸分为三部分;用同样的操作方法继续下去,如果对折4次,然后沿最后一次的折痕剪开,则可以将它剪成_______部分;如果对折次,沿最后一次的折痕剪开,则可以将它剪成_______ 部分.(最后一空用含的式子表示)
(图1) (图2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).
(结果保留根号)
(1)求调整后楼梯AD的长;
(2)求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自行车厂一周计划每日生产辆自行车,由于人数和操作原因,每日实际生产量分别为辆、辆、辆、辆、辆、辆、辆.
用正负数表示每日实际生产量与计划量的增减情况;
该车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆自行车?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).
(1)直线经过点C,且与x轴交与点E,求四边形AECD的面积;
(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)
(1)对于这样的抛物线:
当顶点坐标为(1,1)时,a=;
当顶点坐标为(m,m),m≠0时,a与m之间的关系式是
(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;
(3)现有一组过原点的抛物线,顶点A1 , A2 , …,An在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1 , B2 , …,Bn , 以线段AnBn为边向右作正方形AnBnCnDn , 若这组抛物线中有一条经过Dn , 求所有满足条件的正方形边长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com