精英家教网 > 初中数学 > 题目详情

【题目】有一组邻边相等的凸四边形叫做和睦四边形,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是和睦四边形”.

1)如图1BD平分∠ABCADBC,求证:四边形ABCD和睦四边形

2)如图2,直线x轴、y轴分别交于AB两点,点PQ分别是线段OAAB上的动点.P从点A出发,以每秒4个单位长度的速度向点O运动.Q从点A出发,以每秒5个单位长度的速度向点B运动.PQ两点同时出发,设运动时间为t.当四边形BOPQ和睦四边形时,求t的值;

3)如图3,抛物线轴交于AB两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D.当四边形COBD和睦四边形,且CD=OC.抛物线还满足:①;②顶点D在以AB为直径的圆上. 是抛物线上任意一点,且.恒成立,求m的最小值.

【答案】1)见解析;(2;(3

【解析】

1)由BD平分∠ABC推出∠ABD=CBD,又ABBC,所以∠ADB=CBD,所以∠ABD=ADB,即AB=AD,所以四边形ABCD为“和睦四边形”; (2)分别求出 AQAPBQOPOB的值,连接PQ ,因为,所以,所以,根据勾股定理求出PQ,再分类讨论t的值即可;(3)表示出点的坐标,由可得, 因为得出 所以,即,由①②的方程,且解出a、b的值,求出抛物线的解析式为,因为P在抛物线上,将P代入抛物线得,,可得,又因为,所以,即,得出m的最小值为

解:

1

四边形ABCD为“和睦四边形”;

2)由题意得:AQ=5 t AP=4 t BQ=10 - 5 t OP=8 - 4 t OB=6,连接PQ

综上:

3)由题意得:

由①②,且,得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正六边形ABCDEF中,对角线AEBF相交于点M,BDCE相交于点N.

(1)求证:AE=FB;

(2)在不添加任何辅助线的情况下,请直接写出所有与△ABM全等的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年非洲猪瘟疫情暴发后,今年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:今年720日猪肉价格比今年年初上涨了60%,某市民今年720日在某超市购买1千克猪肉花了80元钱.

1)问:今年年初猪肉的价格为每千克多少元?

2)某超市将进货价为每千克65元的猪肉,按720日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且可能让顾客得到实惠,猪肉的售价应该下降多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A的坐标为(40),点B的坐标为(03),在第一象限内找一点P(a,b) ,使PAB为等边三角形,则2(a-b)=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,反比例函数与二次函数的图象交于点和点

1)当时,求反比例函数的解析式;

2)已知经过原点O的两条直线ABCD分别与双曲线交于ABCD,那么ABCD互相平分,所以四边形ACBD是平行四边形问:平行四边形ACBD能否成为矩形?能否成为正方形?若能,请说明线段ABCD的位置关系;若不能,请说明理由;

3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图所示,并且关于的一元二次方:有两个不相等的实数根,下列结论:①;②;③;④,其中正确的有__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy(如图)中,抛物线yax2+bx+2经过点A40)、B22),与y轴的交点为C

1)试求这个抛物线的表达式;

2)如果这个抛物线的顶点为M,求AMC的面积;

3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE45°,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线lO于点ABO上一点,过点BBCl,垂足为点C,连接ABOB

1)求证:∠ABC=∠ABO

2)若ABAC1,求O的半径.

查看答案和解析>>

同步练习册答案