精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰直角三角形中,,点中点,点为外一点,已知,则CD的长为(  )

A.B.C.D.

【答案】A

【解析】

过点BBF⊥CECE的延长线于点F,由∠BEC=135°,得∠BEF=45°,再通过解直角三角形BEF求得BFEF的长,进而可求得BC长,在等腰直角三角形中,再通过解直角三角形求得AB长,最后利用斜边上的中线等于斜边一半求得CD长即可.

解:如图,过点BBF⊥CECE的延长线于点F

∠BEC=135°

∴∠BEF=180°-135°=45°

Rt△BEF中,sin∠BEF=cosBEF=

BF=BE·sinBEF=EF=BE·cosBEF=

∵EC=

CF=EC+EF=2

Rt△BEF中,BC2=BF2+CF2

BC=

在等腰直角三角形中,∠A=45°sinA=

在直角三角形中,点中点,

CD=AB=

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量(微克)与时间(小时)之间的关系近似地满足图中折线.

1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;

2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校数学兴趣小组的同学测量一架无人飞机P的高度,如图,AB两个观测点相距,在A处测得P在北偏东71°方向上,同时在B处测得P在北偏东35°方向上.求无人飞机P离地面的高度.(结果精确到1米,参考数据:sin71°0.95tan71°2.90)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A3m),B﹣2﹣3)是直线AB和某反比例函数的图象的两个交点.

1)求直线AB和反比例函数的解析式;

2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;

3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间,甲、乙两人在附近的景点游玩,甲从两个景点中任意选择一个游玩,乙从三个景点中任意选择一个游玩.

1)乙恰好游玩景点的概率为    

2)用列表或画树状图的方法列出甲、乙恰好游玩同一景点的所有等可能的结果.并求甲、乙恰好游玩同一景点的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形内接于⊙是⊙的直径,过点的切线与的延长线相交于点.且,连接.

1)求证:

2)过点,垂足为,当时,求⊙的半径;

3)在(2)的条件下,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BCx轴平行,AB两点的纵坐标分别为42,反比例函数yx0)的图象经过AB两点,若菱形ABCD的面积为2,则k的值为(  )

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个圆形转盘,分黑色、白色两个区域.

1)某人转动转盘,对指针落在黑色区域或白色区域进行了大量试验,得到数据如下表:

实验次数()

10

100

2000

5000

10000

50000

100000

白色区域次数()

3

34

680

1600

3405

16500

33000

落在白色区域频率

0.3

0.34

0.34

0.32

0.34

0.33

0.33

请你利用上述实验,估计转动该转盘指针落在白色区域的概率为___________(精确到0.01)

2)若该圆形转盘白色扇形的圆心角为120度,黑色扇形的圆心角为,转动转盘两次,求指针一次落在白色区域,另一次落在黑色区域的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2+2m1x2mm0.5)的最低点的纵坐标为﹣4

1)求抛物线的解析式;

2)如图1,抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于点CD为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;

3)如图2,平移抛物线yx2+2m1x2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点EF(直线PEPF不与y轴平行),求证:直线EF恒过某一定点.

查看答案和解析>>

同步练习册答案