精英家教网 > 初中数学 > 题目详情
已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.
分析:先根据BD⊥AC,CE⊥AB可得出△ACE与△ABD是直角三角形,再由∠A=∠A,可得出∠C=∠B,由AB=AC可知△ACE≌△ABD,由全等三角形的性质可知,AE=AD,结合A=AC即可得出结论.
解答:解:∵BD⊥AC,CE⊥AB,
∴△ACE与△ABD是直角三角形,
∵∠A=∠A,
∴∠C=∠B,
在△ACE与△ABD中,
∠A=∠A
AB=AC
∠B=∠C

∴△ACE≌△ABD,
∴AD=AE,
∵AB=AC,
∴BE=CD.
点评:本题考查的是全等三角形的判定与性质,根据题意判断出△ACE≌△ABD,再根据全等三角形的对应相等进行解答是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB,CD相交于点O,且OA•OD=OB•OC,求证:AC∥DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、已知,如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AC,DB=DC,求证:∠B=∠C.

查看答案和解析>>

同步练习册答案