精英家教网 > 初中数学 > 题目详情

判断题

菱形的对角线相等.

(  )
练习册系列答案
相关习题

科目:初中数学 来源:新课程同步练习 数学 八年级下册 人教版 题型:008

判断题

两条对角线相等的菱形是正方形.

(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分12分)
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
【小题1】(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
【小题2】(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。

查看答案和解析>>

科目:初中数学 来源:2012届陕西省兴平市秦岭中学九年级上学期期末练习数学卷 题型:解答题

(本题满分12分)
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
【小题1】(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
【小题2】(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。

查看答案和解析>>

科目:初中数学 来源:2011年江苏省洋思中学九年级月考数学卷 题型:解答题

(本题满分12分)如图,菱形ABCD的边长为20cm,∠ABC=120°.动点PQ同时从点A出发,其中P以4cm/s的速度,沿ABC的路线向点C运动;Q以2cm/s的速度,沿AC的路线向点C运动.当PQ到达终点C时,整个运动随之结束,设运动时间为t秒.

【小题1】(1)在点PQ运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;
【小题2】(2)点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N
①当t为何值时,点PMN在一直线上?
②当点PMN不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案