分析 根据勾股定理可得AB、AC长,然后再利用勾股定理逆定理可得AB2+AC2=BC2,进而可得∠BAC是直角.
解答 解:由勾股定理,得AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=$\sqrt{5}$,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$2\sqrt{5}$,
∵BD=1,CD=4,
∴BC=1+4=5,
∵($\sqrt{5}$)2+(2$\sqrt{5}$)2=52,
∴AB2+AC2=BC2,
∴∠BAC是直角.
点评 此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AC=BD | B. | AC∥BD | C. | E为CD中点 | D. | ∠A=∠D |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com