分析 (1)作AC的垂直平分线,垂足为O,然后以O点为圆心,OA为半径作圆即可;
(2)如图2,连结OD,CD,根据圆周角定理得到∠ADC=90°,再根据斜边上的中线等于斜边的一半得到DE=EC=BE,则利用等腰三角形的性质得∠1=∠2,加上∠3=∠4,则∠1+∠3=∠2+∠4=90°,于是可根据切线的判定定理可判断DE为⊙O的切线;
(3)证明Rt△BDC∽Rt△BCA,利用相似比计算出BC=$\frac{15}{4}$,然后利用斜边上的中线等于斜边的一半即可得到DE的长.
解答 (1)解:如图1,
(2)证明:如图2,连结OD,CD,
∵AC边为直径,
∴∠ADC=90°,
而E为BC边中点,
∴DE为Rt△BDC斜边BC上的中线,
∴DE=EC=BE,
∴∠1=∠2,
∵OC=OD,
∴∠3=∠4,
∴∠1+∠3=∠2+∠4=∠ACB=90°,
∴OD⊥DE,
∴DE为⊙O的切线;
(3)解:∵∠DBC=∠CBA,
∴Rt△BDC∽Rt△BCA,
∴BC:AB=BD:BC,即BC:(4+$\frac{9}{4}$)=$\frac{9}{4}$:BC,
∴BC=$\frac{15}{4}$,
∴DE=$\frac{1}{2}$BC=$\frac{15}{8}$.
点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com