精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是-

其中正确的是

[  ]

A.①②

B.①④

C.②③

D.③④

答案:D
解析:

  解:∵①当x>0时,利用函数图象可以得出y2>y1此选项错误;

  抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;

  ∴②当x<0时,根据函数图象可以得出x值越大,M值越大;此选项错误;

  抛物线y1=-2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=-2x2+2,最大值为2,故M大于2的x值不存在;

  ∴③使得M大于2的x值不存在,此选项正确;

  使得M=1时,可能是y1=-2x2+2=1,解得:x1,x2=-

  当y2=2x+2=1,解得:x=-

  由图象可得出:当x=>0,此时对应y2=M,

  抛物线y1=-2x2+2与x轴交点坐标为:(1,0),(-1,0),

  当-1<x<0,此时对应y1=M,

  故M=1时,x1,x=-

  故④使得M=1的x值是.此选项正确;

  故正确的有:③④.


提示:

二次函数综合题.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图:已知抛物线y1=-x2-2x+8的图象交x轴于点A,B两点,与y轴的正半轴交于点C.抛物线y2经过B、C两点且对称轴为直线x=3.
(1)确定A、B、C三点的坐标;
(2)求抛物线y2的解析式;
(3)若过点(0,3)且平行于x轴的直线与抛物线y2交于M、N两点,以MN为一边,抛物线y2上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•义乌市)如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x>0时,y1>y2;  ②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在; ④使得M=1的x值是-
1
2
2
2

其中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.那么使得M=1的x值为
-
1
2
2
2
-
1
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•岱山县模拟)如图,已知抛物线y1=ax2+bx+c与抛物线y2=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于A、B两点.
 
(1)求抛物线y1的解析式;
(2)若AB的中点为C,求sin∠CMB;
(3)若一次函数y=kx+h的图象过点M,且与抛物线y1交于另一点N(m,n),其中m≠n,同时满足m2-m+t=0和n2-n+t=0(t为常数).
①求k值;
②设该直线交x轴于点D,P为坐标平面内一点,若以O、D、P、M为顶点的四边形是平行四边形,试求P点的坐标.(只需直接写出点P的坐标,不要求解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y1=-3x2+3,直线y2=3x+3,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:
①当x>0时,y1>y2;②使得M大于3的x值不存在;③当x<0时,x值越大,M值越小; ④使得M=1的x值是-
2
3
6
3

其中正确的是(  )

查看答案和解析>>

同步练习册答案