【题目】在平面直角坐标系xOy中,抛物线y=x2+2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向左平移4个单位长度,得到点B.
(1)求点B的坐标;
(2)抛物线与直线y=a交于M、N两点,将抛物线在直线y=a下方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,即为图形M.
①求线段MN的长;
②若图形M与线段AB恰有两个公共点,结合函数图象,直接写出a的取值范围.
【答案】(1)B(﹣4,﹣3);(2)①MN=4;②﹣6<a<﹣3或a=﹣7.
【解析】
(1)求出A(0,-3),即可得到B(-4,-3);
(2)令即可求出MN的长;
(3)顶点(),关于的对称点为(),当时,,此时图形M与线段AB恰有两个公共点,当时,,,关于翻折部分的函数解析式为,当时,,当时,图形与有三个交点,由此可知在时,图形与有三个交点,要在线段AB的下方,,故且.
(1)当a=0时,A(0,﹣3),
将点A向左平移4个单位长度,得到点B,
∴B(﹣4,﹣3);
(2)①∵抛物线y=x2+2x+a﹣3与直线y=a交于M、N两点,
∴x2+2x+a﹣3=a即x2+2x﹣3=0,
解得:,
∴MN;
②顶点(﹣1,a﹣4),关于y=a的对称点为(﹣1,a+4),
当a+4=﹣3时,a=﹣7,
此时图形M与线段AB恰有两个公共点,
线段AB的两个端点为A(0,﹣3),B(﹣4,﹣3),
当a=﹣6时,y=x2+2x﹣9,y=﹣6,
y=x2+2x﹣9关于y=﹣6翻折部分的函数解析式为y=﹣x2﹣2x﹣4,
当x=0时,y=﹣4,
当a=﹣6时,图形与y=﹣6有三个交点,
∴在﹣6≤a<﹣7时,图形与y=a有三个交点,
∴y=a要在线段AB的下方,
∴a<﹣3,
∴﹣6<a<﹣3或a=﹣7.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点出发沿AB边向B以1cm/s的速度移动,点Q从B点出发沿BC向C点以2cm/s的速度移动,当其中一个点到达终点时两个点同时停止运动,在两个点运动过程中,请回答:
(1)经过多少时间,△PBQ的面积是5cm2?
(2)请你利用配方法,求出经过多少时间,四边形APQC面积最小?并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】吴江区某桶装水经营部每天的房租、人员工资等固定成本为150元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量(桶)与销售单价(元)的函数图象如图所示.
(1)求日均销售量(桶)与销售单价(元)的函数关系;
(2)若该经营部希望日均获利1200元,求该桶装水的销售单价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】港珠澳大桥,从2009年开工建造,于2018年10月24日正式通车.其全长55公里,连接港珠澳三地,集桥、岛、隧于一体,是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.73,tan20°≈0.36,结果精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x=﹣m和x=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2.当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次男子1000米耐力测试中,小明和小亮同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示:
(1)当80≤t≤180时,求小明所跑的路程S(米)与所用的时间t(秒)之间的函数表达式;
(2)求他们第一次相遇的时间是起跑后的第几秒?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表给出了代数式ax2+bx+c与x的一些对应值:
x | … | 0 | 1 | 2 | 3 | 4 | … |
ax2+bx+c | … | 3 |
| ﹣1 |
| 3 | … |
(1)请在表内的空格中填入适当的数;
(2)设y=ax2+bx+c,则当x取何值时,y<0;
(3)当0<x<3,求x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com