【题目】如图,把矩形ABCD沿AC折叠,使点D与点E重合,AE交BC于点F,过点E作EG∥CD交AC于点G,交CF于点H,连接DG.
(1)求证:四边形ECDG是菱形;
(2)若DG=6,AG=,求EH的值.
【答案】(1)详见解析;(2)
【解析】
(1)根据折叠的性质,邻边相等的平行四边形为菱形证得结论;
(2)如图,连接交于点,构造相似三角形,由该相似三角形的对应边成比例求得,可求的长,的长,通过证明可得的长,即可求的值.
解:(1)由折叠可知DC=EC,∠DCG=∠ECG.
∵EG∥CD,
∴∠DCG=∠EGC,
∴∠EGC=∠ECG,
∴EG=EC,
∴EG=DC,且EG∥CD
∴四边形ECDG是平行四边形.
∵EG=EC,
∴平行四边形ECDG是菱形
(2)如图,连接ED交AC于点O,
∵四边形ECDG是菱形,
∴ED⊥AC,,CD=GE=6=DG,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴△DCO∽△ACD,
∴,
∴DC2=OCAC,
设OC=x,则CG=2x,,
∴36=x(2x+),
解得,(不合题意,舍去),
∴,,
∵EG∥CD,CD⊥BC,
∴EG⊥BC,
∴∠DAC=∠ACB,且∠GHC=∠ADC=90°,
∴△ADC∽△CHG,
∴,
∴GH=,
∵EH=EG﹣GH,
∴EH=6﹣=.
科目:初中数学 来源: 题型:
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为252m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数 中的和满足下表:
… | 0 | 1 | 2 | 3 | … | ||
… | 3 | 0 | 0 | m | … |
(1) 观察上表可求得的值为________;
(2) 试求出这个二次函数的解析式;
(3) 若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,请直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】参与两个数学活动,再回答问题:
活动:观察下列两个两位数的积两个乘数的十位上的数都是9,个位上的数的和等于,猜想其中哪个积最大?
,,,,,,,,.
活动:观察下列两个三位数的积两个乘数的百位上的数都是9,十位上的数与个位上的数组成的数的和等于,猜想其中哪个积最大?
,,,,,,.
分别写出在活动、中你所猜想的是哪个算式的积最大?
对于活动,请用二次函数的知识证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF:DC=1:4,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为10,求BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com