【题目】如图,点A和点B在数轴上对应的数分别为a和b,且(a+6)2+|b﹣8|=0.
(1)求线段AB的长;
(2)点C在数轴上所对应的数为x,且x是方程x﹣1=x+1的解,在线段AB上是否存在点D,使得AD+BD=CD?若存在,请求出点D在数轴上所对应的数,若不存在,请说明理由;
(3)在(2)的条件下,线段AD和BC分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t秒,M为线段AD的中点,N为线段BC的中点,若MN=12,求t的值.
【答案】(1)14;(2)在线段AB上存在点D,使得AD+BD=CD,点D在数轴上所对应的数为﹣2.(3)t=3秒或27秒.
【解析】
(1)由偶次方和绝对值的非负性可得a和b的值,从而可得AB的值;
(2)解方程x﹣1=x+1,可得点C在数轴上所对应的数;设在线段AB上存在点D,使得AD+BD=CD,且点D在数轴上所对应的数为y,将相关数据代入得关于y的一元一次方程,解得y即可;
(3)先求得A,D,B,C四点在数轴上所对应的数,再得运动前M,N两点在数轴上所对应的数和运动t秒后M,N两点在数轴上所对应的数,然后根据MN=12,分类讨论计算,求得t值即可.
(1)∵(a+6)2≥0,|b﹣8|≥0,
又∵(a+6)2+|b﹣8|=0
∴(a+6)2=0,|b﹣8|=0
∴a+6=0,8﹣b=0
∴a=﹣6,b=8
∴AB=OA+OB=6+8=14.
(2)解方程x﹣1=x+1
得:x=14
∴点C在数轴上所对应的数为14;
设在线段AB上存在点D,使得AD+BD=CD,且点D在数轴上所对应的数为y,则:
AD=y+6,BD=8﹣y,CD=14﹣y
∴y+6+(8﹣y)=(14﹣y)
解得:y=﹣2
∴在线段AB上存在点D,使得AD+BD=CD,点D在数轴上所对应的数为﹣2.
(3)由(2)得:A,D,B,C四点在数轴上所对应的数分别为:6,2,8,14.24.
∴运动前M,N两点在数轴上所对应的数分别为﹣4,11
则运动t秒后M,N两点在数轴上所对应的数分别为﹣4+6t,11+5t
∵MN=12
∴①线段AD没有追上线段BC时有:
(11+5t)﹣(﹣4+6t)=12
解得:t=3
②线段AD追上线段BC后有:
(﹣4t+6)﹣(11+5t)=12
解得:t=27
∴综上所述:当t=3秒或27秒时线段MN=12.
科目:初中数学 来源: 题型:
【题目】有一座抛物线拱型桥,在正常水位时,水面的宽为米,拱桥的最高点到水面的距离为米,点是的中点,如图,以点为原点,直线为轴,建立直角坐标系.
(1)求该抛物线的表达式;
(2)如果水面上升米(即)至水面,点在点的左侧,
求水面宽度的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,点O是EF中点,连结BO井延长到G,且GO=BO,连接EG,FG
(1)试求四边形EBFG的形状,说明理由;
(2)求证:BD⊥BG
(3)当AB=BE=1时,求EF的长,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E是ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.
(1)求证:△ABE≌△FCE.
(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为( )
A. 5B. 4C. 3D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)若EG=EH,AB=8,BC=4.求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了庆祝元旦,某商场在门前的空地上用花盆排列出了如图所示的图案,第1个图案中有10个花盆,第2个图案中有19个花盆,…,按此规律排列下去.
(1)第3个图案中有______个花盆,第4个图案中有______个花盆;
(2)根据上述规律,求出第个图案中花盆的个数(用含的代数式表示);
(3)是否存在恰好由2026个花盆排列出的具有上述规律的图案?若存在,说明它是第几个图案?若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车配件加工厂给该厂的某车间下达了在一周内加工某种汽车配件 35000 件的任务,该车间接到任务后,计划平均每天加工 5000 件,由于各种原因,每天实际加工的件数与每天计划加工的件数相比有出入,把超额或不足的部分分别用正、负数来表示,下表是这周加工这种汽车配件的记录情况:
(1)这周的前三天共加工了多少件?
(2)这周内加工最多的一天比加工最少的一天多加工了多少件?
(3)已知该厂对这个车间实行计件工资制,每加工 1 件得 12 元,若超额完成任务,则超额部分每件再奖 8 元;若没有完成任务,则每少一件倒扣 8 元,求该车间这周的总收入.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com