精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠B=65°∠C=45°,AD是BC边上的高,AE是∠BAC的平线,求∠DAE的度数?

【答案】10 °

【解析】由三角形的内角和定理,可求∠BAC=70°,又由AE是∠BAC的平分线,可求∠BAE=35°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=25°,所以∠DAE=∠BAE-∠BAD=10°.

解:在△ABC中,
∵∠BAC=180°-∠B-∠C=70°,
∵AE是∠BAC的平分线,
∴∠BAE=∠CAE=35°.
又∵AD是BC边上的高,
∴∠ADB=90°,
∵在△ABD中∠BAD=90°-∠B=25°,
∴∠DAE=∠BAE-∠BAD=10°.

“点睛”本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是三角形的内角和定理,一定要熟稔于心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,E是边BC的中点.AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证AME≌△ECF,所以AE=EF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把E是边BC的中点改为E是边BC(B,C)的任意一点,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,EBC的延长线上(C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立。你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若4anb3与﹣3a5bm1是同类项,则m﹣n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】飞机在12000米高空飞行时,机舱外的温度为-56℃,机舱内的温度为26℃,则机舱外的温度比机舱内低 _____________ ℃。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上点A表示的数是-5 , 点B到点A的距离是3, 则点B所表示的数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.

(1)说明:DC∥AB;
(2)求∠PFH的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)(﹣a234a 22xx+1+x+12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:

用电量(度)

120

140

160

180

200

户数

2

3

6

7

2

则这20户家庭该月用电量的众数和中位数分别是( )
A.180,160
B.160,180
C.160,160
D.180,180

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=150°∠BCD30°,点M在BC上,AB=BM,CM=CD,点N为AD的中点,求证:BN⊥CN。

查看答案和解析>>

同步练习册答案