精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形的顶点在坐标原点,顶点分别在轴的正半轴上,顶点在反比例函数为常数,)的图象上,将矩形绕点按逆时针方向旋转得到矩形,若点的对应点恰好落在此反比例函数图象上,则的值是__________.

【答案】

【解析】设A(m,n),则OB=m,OC=n,根据旋转的性质得到O′C′=n,B′O′=m,于是得到O′(m+n,n-m),于是得到方程(m+n)(n-m)=mn,求得=,(负值舍去),即可得到结论.

设A(m,n),
则OB=m,OC=n,
∵矩形ABOC绕点A按逆时针反向旋转90°得到矩形AB′O′C′,
∴O′C′=n,B′O′=m,
∴O′(m+n,n-m),
∵A,O′在此反比例函数图象上,
∴(m+n)(n-m)=mn,
∴m2+mn-n2=0,
∴m=n,
=,(负值舍去),
的值是
故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,点分别是边上的点,且相交于点,若点的重心.则以下结论:①线段的三条角平分线;②的面积是面积的一半;③图中与面积相等的三角形有5个;④的面积是面积的.其中一定正确的结论有(

A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(感知)如图①在等边ABC和等边ADE中,连接BDCE,易证:ABD≌△ACE

(探究)如图②△ABCADE中,∠BAC=DAE,∠ABC=ADE,求证:ABD∽△ACE

(应用)如图③,点A的坐标为(06),AB=BO,∠ABO=120°,点Cx轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了改善办公条件,计划从厂家购买AB两种型号电脑。已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.

1)求AB两种型号电脑每台价格各为多少万元?

2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,…都是等腰直角三角形,其直角顶点,…均在直线.,…的面积分别为,…,根据图形所反映的规律,

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.

求y关于x的函数关系式;

该商店购进A型、B型电脑各多少台,才能使销售总利润最大?

(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABACAD为∠BAC的角平分线,DEF为∠BAC的角平分线上的若干点.如图1,连接BDCD,图中有1对全等三角形;如图2,连接BDCDBECE,图中有3对全等三角形;如图3,连接BDCDBECEBFCF,图中有6对全等三角形;依此规律,第n个图形中有_____对全等三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P90°A(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P90°-∠A(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P90°A.上述说法正确的个数是(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠BAC=106°,EFMN分别是ABAC的垂直平分线,点ENBC上,则∠EAN=_____

查看答案和解析>>

同步练习册答案