精英家教网 > 初中数学 > 题目详情

【题目】如图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD'E'的位置(如图2所示).已知AD90厘米,DE30厘米,EC40厘米.

1)求点D'BC的距离;

2)求EE'两点的距离.

【答案】1)点D'BC的距离是(4570)厘米;(2EE’两点的距离是30厘米。

【解析】

1)过点D'D'HBC,垂足为点H,交AD于点F,利用矩形的性质得到∠AFD'=∠BHD'90°,再解直角三角形即可解答

2)连接AEAE'EE',得出△AEE'是等边三角形,利用勾股定理得出AE,即可解答

过点D'D'HBC,垂足为点H,交AD于点F.

由题意,得AD'AD90(厘米),∠DAD'60°.

∵四边形ABCD是矩形,∴ADBC,∴∠AFD'=∠BHD'90°.

RtAD'F中,D'FAD'·sinDAD'90×sin60°(厘米).

又∵CE40(厘米),DE30(厘米),∴FHDCDECE70(厘米)、

D'HD'FFH=(70)(厘米).

答:点D'BC的距离是(70)厘米.

2)连接AEAE'EE'.由题意,得AE'AE,∠EAE'60°.

∴△AEE'是等边三角形

EE'AE

∵四边形ABCD是矩形,

∴∠ADE90°

RtADE中,AD90(厘米),DE30(厘米):

AE (厘米)

EE'(厘米).

答:EE’两点的距离是厘米。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知菱形ABCD与线段AE,且AEAB重合.现将线段AE绕点A逆时针旋转180°,在旋转过程中,若不考虑点E与点B重合的情形,点E还有三次落在菱形ABCD的边上,设∠B=α,则下列结论正确的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A.了解全国中学生最喜爱哪位歌手,适合全面调查.

B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S25S20.5,则甲麦种产量比较稳.

C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.

D.一组数据:325546的众数是5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2a,EBC边的中点, 的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为4,PBC边上的动点,连接AP,作PQ⊥PACD边于点Q.当点PB运动到C时,线段AQ的中点M所经过的路径长(  )

A. 2 B. 1 C. 4 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD1,以AD为边作等边△ADE,过点EEFBC,交AC于点F,连接BF,则下列结论中ABD≌△BCF四边形BDEF是平行四边形;S四边形BDEFSAEF.其中正确的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:

成绩(m

2.3

2.4

2.5

2.4

2.4

则下列关于这组数据的说法,正确的是(  )

A.众数是2.3B.平均数是2.4

C.中位数是2.5D.方差是0.01

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8/千克,下面是他们在活动结束后的对话.

小丽:如果以10/千克的价格销售,那么每天可售出300千克.

小强:如果每千克的利润为3元,那么每天可售出250千克.

小红:如果以13/千克的价格销售,那么每天可获取利润750元.

【利润=(销售价-进价)销售量】

1)请根据他们的对话填写下表:

销售单价x(元/kg

10

11

13

销售量ykg




2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x0)的函数关系式;

3)设该超市销售这种水果每天获取的利润为W元,求Wx的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一座抛物线型拱桥,在正常水位时水面的宽为18米,拱顶离水面的距离9米,建立如图所示的平面直角坐标系.

1)求此抛物线的解析式;

2)一艘货船在水面上的部分的横断面是矩形.

①如果限定矩形的长12米,那么要使船通过拱桥,矩形的高不能超过多少米?

②若点都在抛物线上,设,当的值最大时,求矩形的高.

查看答案和解析>>

同步练习册答案