精英家教网 > 初中数学 > 题目详情
(2013•昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.
(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)
分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.
解答:解:(1)∵A(3,0)、B(4,4)、O(0,0)在抛物线y=ax2+bx+c (a≠0)上.
9a+3b+c=0
16a+4b+c=4
c=0

解得:
a=1
b=-3
c=0

故抛物线的解析式为:y=x2-3x;

(2)设直线OB的解析式为y=k1x( k1≠0),
由点B(4,4)得
4=4 k1
解得k1=1.
∴直线OB的解析式为y=x,∠AOB=45°.
∵B(4,4),
∴点B向下平移m个单位长度的点B′的坐标为(4,0),
故m=4.
∴平移m个单位长度的直线为y=x-4.
解方程组 
y=x2-3x
y=x-4
   
解得:
x=2
y=-2

∴点D的坐标为(2,-2).

(3)∵直线OB的解析式y=x,且A(3,0).
∵点A关于直线OB的对称点A′的坐标为(0,3).
设直线A′B的解析式为y=k2x+3,此直线过点B(4,4).
∴4k2+3=4,
解得 k2=
1
4

∴直线A′B的解析式为y=
1
4
x+3.
∵∠NBO=∠ABO,∴点N在直线A′B上,
设点N(n,
1
4
n+3),又点N在抛物线y=x2-3x上,
1
4
n+3=n2-3n.
解得  n1=-
3
4
,n2=4(不合题意,舍去),
∴点N的坐标为(-
3
4
45
16
).
如图,将△NOB沿x轴翻折,得到△N1OB1
则 N1 (-
3
4
,-
45
16
),B1(4,-4).
∴O、D、B1都在直线y=-x上.
过D点做DP1∥N1B1
∵△P1OD∽△NOB,
∴△P1OD∽△N1OB1
∴P1为O N1的中点.
OP1
ON
=
OD
OB1
=
1
2

∴点P1的坐标为(-
3
8
,-
45
32
).
将△P1OD沿直线y=-x翻折,可得另一个满足条件的点到x轴距离等于P1到y轴距离,点到y轴距离等于P1到x轴距离,
∴此点坐标为:(
45
32
3
8
).
综上所述,点P的坐标为(-
3
8
,-
45
32
)和(
45
32
3
8
).
点评:此题主要考查了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•昭通)如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昭通)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.
(1)求∠ADC的度数;
(2)求证:AE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昭通)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昭通)如图,在⊙C的内接△AOB中,AB=AO=4,tan∠AOB=
34
,抛物线y=a(x-2)2+m(a≠0)经过点A(4,0)与点(-2,6).
(1)求抛物线的解析式;
(2)直线m与⊙C相切于点A,交y轴于点D,动点P在线段OB上,从点O出发向点B运动,同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长.当PQ⊥AD时,求运动时间t的值.

查看答案和解析>>

同步练习册答案