精英家教网 > 初中数学 > 题目详情
在矩形ABCD中,△ABD沿对角线BD对折,A与A′重合,AD=8,AB=6,A′D与BC相交于O.
(1)求证:△A′BO≌△DOC.
(2)求BO的长.
(3)求证:四边形A′CDB为等腰梯形.
精英家教网
(1)证明:在△A′BO与△DOC中,
∠BOA′=∠OCD
∠OA′B=∠OCD
A′B=CD

∴△A′BO≌△DOC(AAS);

(2)BO+OC=8,OB2=OD2=OC2+36,
解得BO=6.25(4分)

(3)证明:∵△A′BO≌△DOC,
∴OB=OD,OC=OA′,
OB
OC
=
OD
OA

∴A′CDB,
又∵A′B=CD,
∴四边形A′CDB为等腰梯形.(4分)
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4,BC=7,P是BC边上与B点不重合的动点,过点P的直线交CD的延长线于R,交AD于Q(Q与D不重合),且∠RPC=45°,设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系,并求自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC.求证:AE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在矩形ABCD中,AB=8,AD=6,E为AB边上一点,连接DE,过C作CF垂直DE.
(1)求证:△CDF∽△DEA;
(2)若设CF=x,DE=y,求y与x的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AF、BE、CE、DF分别是矩形的四个角的角平分线,E、M、F、N是其交点,求证:四边形EMFN是正方形.

查看答案和解析>>

同步练习册答案