精英家教网 > 初中数学 > 题目详情
如图,已知:点A(3,0),B(0,4)分别是x轴,y轴上的点,动点P和Q分别从原点出发,沿x轴,y轴正方向运动,速度分别是2个单位长度/秒和1单位长度/秒,设运动时间为t秒,当1.5<t<4时,连接PQ交直线AB于点C,过点Q作QD∥BA交x轴正方向于点D.
(1)求AB的长度;
(2)试证明QD=DP;
(3)当以O,A,C为顶点的三角形是等腰三角形时,求t的值.
分析:(1)在Rt△BOA中,由勾股定理求出即可;
(2)根据平行线性质得出∠QDO=∠BAO,即sin∠QDO=sin∠BAO,得出
OQ
QD
=
BO
AB
,求出QD=
5
4
t,同理OD=
3
4
t,求出DP,即可得出答案;
(3)过C作CM⊥OA于M,求出AC=AP=2t-3,根据解直角扇形求出AM、CM,OM,分为三种情况①OC=AC,②OC=AO,③OA=AC,代入求出即可.
解答:解:(1)在Rt△BOA中,BO=4,AO=3,由勾股定理得:AB=
32+42
=5;

(2)∵QD∥AB,
∴∠QDO=∠BAO,
∴sin∠QDO=sin∠BAO,
OQ
QD
=
BO
AB

t
QD
=
4
5

∴QD=
5
4
t,
同理OD=
3
4
t,
∴DP=2t-
3
4
t=
5
4
t,
∴QD=DP;

(3)过C作CM⊥OA于M,
∵QD∥AC,
∴∠ACP=∠DQP,
∵DQ=DP,
∴∠CPA=∠DQP,
∴∠APC=∠ACP,
∴AC=AP=2t-3,
∵sin∠CAM=
CM
AC
=
4
5
,cos∠CAM=
AM
AC
=
3
5

∴CM=
4
5
(2t-3),AM=
3
5
(2t-3),
∴OM=3-
3
5
(2t-3)=
24
5
-
6
5
t,
分为三种情况:①AC=OA,
2t-3=3,
t=3;
②OC=AC,
24
5
-
6
5
t)2+[
4
5
(2t-3)]2=(2t-3)2
解得:t=
11
4

③OC=OA,
24
5
-
6
5
t)2+[
4
5
(2t-3)]2=32
解得:t1=1.5,t2=3.3,
∵1.5<t<4,
∴t1=1.5舍去,
即t的值是3或
11
4
或3.3.
点评:本题考查了等腰三角形的判定,平行线性质,解直角三角形的应用,主要考查学生综合运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D,
(1)求证:∠PCD=∠PDC.
(2)你认为OP与CD有什么关系?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知:点B、D、C、F在一条直线上,且BD=FC,AB=EF,AB∥EF;
求证:△ABC≌△EFD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:点B、F、C、E在一条直线上,BC=EF,AB=DE.
(1)请你只添加一个条件(不再加辅助线),使△ABC≌△DEF,你添加的条件是
 

(2)在你添加的条件后,证明△ABC≌△DEF.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德化县一模)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从①AB=ED;②BC=EF;③∠ACB=∠DFE.三个条件中选择一个合适的,添加到已知条件中,使AB∥ED成立,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为
5
3
3
5
3
3

查看答案和解析>>

同步练习册答案