精英家教网 > 初中数学 > 题目详情

【题目】在同一平面内,若有条直线,则最多有______个交点;若条直线中恰好有且只有条直线互相平行,则这条直线最多有_____个交点(用含有的式子表示).

【答案】

【解析】

(1)直接分析即可得到答案;

(2)根据第一问可以发现规律,则可以把m条直线的最多交点个数计算出来,再把有平行线的时候的少掉的交点个数去掉即可得到答案.

解:2直线的最多交点个数:1,即

3直线的最多交点个数:3,即

4条直线的最多交点个数:6,即

则可以发现规律,m条直线的最多交点个数为:

条直线的最多交点个数:

故根据上述规律又可以得到:当存在条直线互相平行,交点个数会减少:个顶点,

所以条直线中恰好有且只有条直线互相平行时这条直线最多有的交点个数为:

故答案为:6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直角坐标平面内两点A(2,-3)B(3,-3),将点B向上平移5个单位到达点C,求:

(1)AB两点间的距离;

(2)写出点C的坐标;

(3)四边形OABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填写理由:

已知:如图,ABC是直线,1=115°,D=65°.

求证:ABDE.

证明:∵ABC是一直线,(已知)

∴∠1+2=180°( )

∵∠1=115°(已知)

∴∠2=65°

又∵∠D=65°(已知)

∴∠2=D

( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴相交于A、B两点,点B的坐标为(3,0),与y轴相交于点C(0,﹣3),顶点为D.

(1)求出抛物线y=x2+bx+c的表达式;
(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①当m为何值时,四边形PEDF为平行四边形.
②设四边形OBFC的面积为S,求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE、CF相交于点D,则①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是(
A.①
B.②
C.①②
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则tan∠ECF=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线ABCD于点OOE平分∠BODOF平分∠COB,∠AOD:∠BOE52,则∠AOF等于(  )

A. 140° B. 130° C. 120° D. 110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为A0a),Bba),且ab满足(a32+|b6|0,现同时将点AB分别向下平移3个单位,再向左平移2个单位,分别得到点AB的对应点CD,连接ACBDAB

1)求点CD的坐标及四边形ABDC的面积S四边形ABCD

2)在y轴上是否存在一点M,连接MCMD,使SMCDS四边形ABCD?若存在这样一点,求出点M的坐标,若不存在,试说明理由;

3)点P是直线BD上的一个动点,连接PAPO,当点PBD上移动时(不与BD重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解我市某中学九年级学生的体能情况,在该校800名九年级学生中随机抽取了部分学生进行引体向上测试,现对这部分学生引体向上的次数进行统计,并绘制成如图所示的频数分布直方图.

(1)求共抽取了多少名学生进行引体向上测试?

(2)试估计该校九年级学生引体向上次数不低于5次的人数.

查看答案和解析>>

同步练习册答案