分析 (1)如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形,再证明△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.
(2)第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1).
解答 解:(1)如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,
∵AB=AC,∠BAC=90°,
∴∠ABC=45°,…(1分)
∵∠DBC=30°,
∴∠ABD=∠ABC-∠DBC=15°,
在△ABD和△ABD′中,
$\left\{\begin{array}{l}{AB=AB}\\{∠ABD=∠ABD′}\\{BD=BD′}\end{array}\right.$,
∴△ABD≌△ABD′,
∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,
∴∠D′BC=∠ABD′+∠ABC=60°,
∵BD=BD′,BD=BC,
∴BD′=BC,
∴△D′BC是等边三角形,
∴D′B=D′C,∠BD′C=60°,
在△AD′B和△AD′C中,
$\left\{\begin{array}{l}{AD=AD′}\\{D′B=D′C}\\{AB=AC}\end{array}\right.$,
∴△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∴∠AD′B=$\frac{1}{2}$∠BD′C=30°,
∴∠ADB=30°.
(2)解:第①种情况:当60°<α≤120°时,
如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,
∵AB=AC,∴∠ABC=∠ACB,
∵∠BAC=α,
∴∠ABC=$\frac{180-α}{2}$=90°-$\frac{α}{2}$,
∴∠ABD=∠ABC-∠DBC=90°-$\frac{α}{2}$-β,
同(1)可证△ABD≌△ABD′,
∴∠ABD=∠ABD′=90°-$\frac{α}{2}$-β,BD=BD′,∠ADB=∠AD′B
∴∠D′BC=∠ABD′+∠ABC=90°-$\frac{α}{2}$-β+90°-$\frac{α}{2}$=180°-(α+β),
∵α+β=120°,
∴∠D′BC=60°,
由(1)可知,△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∴∠AD′B=$\frac{1}{2}$∠BD′C=30°,
∴∠ADB=30°.
第②种情况:当0°<α<60°时,
如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.
同理可得:∠ABC=$\frac{180°-α}{2}$=90°-$\frac{α}{2}$,
∴∠ABD=∠DBC-∠ABC=β-(90°-$\frac{α}{2}$),
同(1)可证△ABD≌△ABD′,
∴∠ABD=∠ABD′=β-(90°-$\frac{α}{2}$),BD=BD′,∠ADB=∠AD′B,
∴∠D′BC=∠ABC-∠ABD′=90°-$\frac{α}{2}$-[β-(90°-$\frac{α}{2}$)]=180°-(α+β),
∴D′B=D′C,∠BD′C=60°.
同(1)可证△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∵∠AD′B+∠AD′C+∠BD′C=360°,
∴∠ADB=∠AD′B=150°.
点评 本题考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 9.12×109 | B. | 9.12×1010 | C. | 9.12×108 | D. | 9.12×1011 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com