精英家教网 > 初中数学 > 题目详情
问题探究:
(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);
(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.

【答案】分析:(1)蚂蚁爬行的最短路程为矩形的对角线的长度,由勾股定理可求得.
(2)蚂蚁爬行的最短路程为圆锥展开图中的AA′的连线,可求得△PAA′是等边三角形,则AA′=PA=4.
(3)蚂蚁爬行的最短路程为圆锥展开图中点A到PA的距离.
解答:解:(1)∵BB′=2π×=3,
AB′==5.
即蚂蚁爬行的最短路程为5.(4分)

(2)连接AA′,则AA′的长为蚂蚁爬行的最短路程,
设r1为圆锥底面半径,r2为侧面展开图(扇形)的半径,

由题意得:,即
∴n=60,
∴△PAA′是等边三角形,
∴最短路程为AA′=PA=4.

(3)如图③所示是圆锥的侧面展开图,
过A作AC⊥PA′于点C,
则线段AC的长就是蚂蚁爬行的最短路程.
∴AC=PA•sin∠APA'=4×sin60°=4×=
∴蚂蚁爬行的最短距离为
点评:本题利用了勾股定理,矩形的性质,圆周长公式,弧长公式,等边三角形的判定和性质,直角三角形的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

问题探究:
(1)如图①所示是一个半径为
3
,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);
(2)如图②所示是一个底面半径为
2
3
,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•昌平区一模)问题探究:
(1)如图1,在边长为3的正方形ABCD内(含边)画出使∠BPC=90°的一个点P,保留作图痕迹;
(2)如图2,在边长为3的正方形ABCD内(含边)画出使∠BPC=60°的所有的点P,保留作图痕迹并简要说明作法;
(3)如图3,已知矩形ABCD,AB=3,BC=4,在矩形ABCD内(含边)画出使∠BPC=60°,且使△BPC的面积最大的所有点P,保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•临川区模拟)问题背景:如图1,四边形ABCD和CEFG都是正方形,B,C,E在同一条直线上,连接BG,DE.
问题探究:
(1)①如图1所示,当G在CD边上时,猜想线段BG、DE的数量关系及所在直线的位置关系.(不要求证明)
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,请选择图2或图3证明你的判断.
类比研究:
(2)若将原题中的“正方形”改为“矩形”(如图4所示),且
AB
BC
=
CE
CG
=k(其中k>0),请直接写出线段BG、DE的数量关系及位置关系.请选择图5或图6证明你的判断.
拓展应用:
(3)在(1)中图2中,连接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题探究:
(1)如图1,在⊙O中,AB是直径,CD⊥AB于点E,AE=a,EB=b.计算CE的长度(用a、b的代数式表示).
(2)如图2,请你在边长分别为a、b(a>b)的矩形ABCD的边AD上找一点M,使得线段CM=
ab
(保留作图痕迹).
问题解决:
(3)请你在(2)中结论的基础上,在图3中对矩形ABCD进行拆分并拼接为一个与其面积相等的正方形.并探究你所画出拼成的正方形的面积是否存在最大值和最小值?若存在,求出这个最大值和最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题情境:
学生生物小组有一块长30m,宽20m的矩形ABCD试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道如图1,要使种植面积为504m2

问题探究:
(1)如图1,小道的宽应设计为多少m?
(2)若设计者将图1中纵向小道变成如图2所示的一条与横向小道等宽的小道,请你说明两小道重叠部分四边形EFGO是什么特殊的四边形?此时种植面积
变化
变化
(填变化或不变)
(3)若设计者将图1中小道边交叉点O落在矩形ABCD的对角线BD上,并建立如图3所示的直角坐标系,且满足OM=ON,请你求出点A的坐标及过点C的反比例函数的关系式.

查看答案和解析>>

同步练习册答案