精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,二次函数的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).

(1)求该二次函数的表达式及点C的坐标;

(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.

①求S的最大值;

②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.

【答案】(1)C(8,0);(2)50;18

【解析】

试题分析:(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标

(2)①连结OF,如图,设F(t,),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;

②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,),然后把E(t﹣8,)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.

试题解析:(1)把A(0,8),B(﹣4,0)代入,解得,所以抛物线的解析式为

当y=0时,,解得,所以C点坐标为(8,0);

(2)①连结OF,如图,设F(t,),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD===

当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;

②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,),∵E(t﹣8,)在抛物线上,∴ ,解得t=7,当t=7时,S△CDF==9,∴此时S=2S△CDF=18.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE.

1求证:DE是O的切线;

2若AE=6,D=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个多边形的内角和是外角和的3倍则它是_________ 边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.

无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机 (普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:

住宿费

(2人一间的标准间)

伙食费

市内交通费

旅游景点门票费

(身高超过1.2米全票)

每间每天x

每人每天100元

每人每天y

每人每天120元

假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.

(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求xy的值;

(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用? 如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元.
(1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;
(2)求出总运费最低的调运方案,最低运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是线段AB上一点,点MNP分别是线段ACBCAB的中点, ,求:

线段AM的长;

线段PN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知直线AB及直线AB外一点P按下列要求完成画图和解答:1)连接PAPB用量角器画出∠APB的平分线PCAB于点C

2)过点PPDAB于点D

3)用刻度尺取AB中点E连接PE

4)根据图形回答P到直线AB的距离是线段 的长度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.

(1)求一次函数和反比例函数的解析式;

(2)观察图象,直接写出不等式kx+b﹣<0的解集.

(3)P是x轴上的一点,且满足△APB的面积是9,写出P点的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强同学对本校学生完成家庭作业的时间进行了随机抽样调查,并绘成如下不完整的三个统计图表.

组别

时间

(小时)

频数

(人)

频率

A

0≤x≤0.5

20

0.2

B

0.5<x≤1

a

C

1<x≤1.5

D

x>1.5

30

0.3

合计

b

1.0

各组频数、频率统计表

各组人数分布扇形统计图

各组频数条形统计图

(1)a= ,b= ,∠α= ,并将条形统计图补充完整。

(2)若该校有学生3200人,估计完成家庭作业时间超过1小时的人数。

(3)根据以上信息,请您给校长提一条合理的建议。

查看答案和解析>>

同步练习册答案