精英家教网 > 初中数学 > 题目详情

【题目】某小区有一半径为8m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线.在距水池中心3m处达到最高,高度为5m,且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合.以水平方向为x轴,喷水池中心为原点建立如图所示的平面直角坐标系.

1)求水柱所在抛物线对应的函数关系式;

2)王师傅在喷水池维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8m的王师傅站立时必须在离水池中心多少米以内?

【答案】1;(27米.

【解析】

1)根据顶点坐标可设二次函数的顶点式,代入点(80),求出a值,此题得解;

2)利用二次函数图象上点的坐标特征,求出当y=1.8x的值,由此即可得出结论.

解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=ax32+5a0),

将(80)代入y=ax32+5,得:25a+5=0

解得:a=

∴水柱所在抛物线的函数表达式为y=x32+50x8).

2)当y=1.8时,有﹣x32+5=1.8

解得:x1=1x2=7

∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数学课外兴趣小组的同学们要测量被池塘相隔的两棵树AB的距离,他们设计了如图的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到FCAE上一点,其中4位同学分别测得四组数据:①AC,∠ACB;②EFDEAD;③CD,∠ACB,∠ADB;④∠F,∠ADBFB.其中能根据所测数据求得AB两树距离的有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,动点从点出发,在边上以每秒2的速度向点匀速运动,同时动点从点出发,在边上以每秒的速度向点匀速运动,设运动时间为(),连接

1)若,求的值;

2)若相似,求的值;

3)当为何值时,四边形的面积最小?并求出最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴相交于两点(点在点的左侧),与轴相交于点为抛物线上一点,横坐标为,且

⑴求此抛物线的解析式;

⑵当点位于轴下方时,求面积的最大值;

⑶设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为

①求关于的函数解析式,并写出自变量的取值范围;

②当时,直接写出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x=的抛物线经过B20)、C04)两点,抛物线与x轴的另一交点为A

1)求抛物线的解析式;

2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;

3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点Bm,1),若﹣5≤m≤5,则点C运动的路径长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y轴相交于点A03),与x正半轴相交于点B,对称轴是直线x=1

1)求此抛物线的解析式以及点B的坐标.

2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,MN同时停止运动.过动点Mx轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.

①当t为何值时,四边形OMPN为矩形.

②当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程

13x22120

2)(x1)(x+3)=﹣4

3x24x+10

4)(2x1)=212x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形中,AB=8BC=6,过对角线中点的直线分别交边于点.

(1)求证:四边形是平行四边形;

(2)当四边形是菱形时,求的长.

查看答案和解析>>

同步练习册答案