精英家教网 > 初中数学 > 题目详情
(2013•包头)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a-b+c>0;④(a+c)2<b2.其中正确的结论是(  )
分析:由抛物线的开口方向判断a与0的关系,由对称轴及抛物线与x轴交点情况进行推理,利用图象将x=1,-1,2代入函数解析式判断y的值,进而对所得结论进行判断.
解答:解:①图象开口向上,对称轴在y轴右侧,能得到:a>0,-
b
2a
>0,则b<0,正确;
②∵对称轴为直线x=1,∴x=2与x=0时的函数值相等,∴当x=2时,y=4a+2b+c>0,错误;
③当x=-1时,y=a-b+c>0,正确;
④∵a-b+c>0,∴a+c>b;∵当x=1时,y=a+b+c<0,∴a+c<-b;∴b<a+c<-b,∴|a+c|<|b|,∴(a+c)2<b2,正确.
所以正确的结论是①③④.
故选C.
点评:本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,将x=1,-1,2代入函数解析式判断y的值是解题关键,得出b<a+c<-b是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•包头)已知方程x2-2x-1=0,则此方程(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)已知下列命题:
①若a>b,则c-a<c-b;
②若a>0,则
a2
=a;
③对角线互相平分且相等的四边形是菱形;
④如果两条弧相等,那么它们所对的圆心角相等.
其中原命题与逆命题均为真命题的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)已知抛物线y=x2-3x-
7
4
的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.
(1)求点A、B、C、D的坐标;
(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;
(3)取点E(-
3
2
,0)和点F(0,-
3
4
),直线l经过E、F两点,点G是线段BD的中点.
①点G是否在直线l上,请说明理由;
②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案