精英家教网 > 初中数学 > 题目详情
20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在线段OA,OC上,且OB=OD,∠1=∠2,AE=CF.
(1)证明:△BEO≌△DFO;
(2)证明:四边形ABCD是平行四边形.

分析 (1)由条件可利用ASA证得结论;
(2)由(1)的结合可得OE=OF,则可求得AE=CF,可求得OA=OC,则可证得四边形ABCD为平行四边形.

解答 证明:
(1)∵∠EOB与∠FOD是对顶角,
∴∠EOB=∠FOD,
在△BEO和△DFO中
$\left\{\begin{array}{l}{∠1=∠2}\\{OB=OD}\\{∠EOB=∠FOD}\end{array}\right.$
∴△BEO≌△DFO(ASA);
(2)由(1)可知△BEO≌△DFO,
∴OE=OF,
∵AE=CF,
∴OA=OC,
∵OB=OD,
∴四边形ABCD为平行四边形.

点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边相等、对应角相等)是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.计算:(-$\frac{1}{2}$)-2+$\sqrt{8}$+|1-$\sqrt{2}$|0-2sin60°+tan60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知反比例函数y=kx-1(k>0)的图象与一次函数图象y=-x+4交于a、b两点,点a的纵坐标为3.
(1)求反比例函数的解析;
(2)y轴上是否存在一点P,使2∠APB=∠AOB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点C.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变.
①(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
②若EC=2,试求四边形EFCG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.两个无理数的积一定是(  )
A.不是有理数B.不是无理数C.不是1D.不是0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线y=x+1与x轴交于点B,y轴交于A点,与反比例函数y=$\frac{k}{x}$(x>0)的图象交于点M,过M作MH⊥x轴于点H,且AO=$\frac{1}{2}$MH.
(1)求k的值;
(2)在y轴上是否存在点P,使得点P、A、H、M为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.阅读理解题:解不等式(x+1)(x-3)>0.
解:根据两数相乘,同号得正,原不等式可以转化为:
$\left\{\begin{array}{l}{x+1>0}\\{x-3>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+1<0}\\{x-3<0}\end{array}\right.$,
解不等式组$\left\{\begin{array}{l}{x+1>0}\\{x-3>0}\end{array}\right.$,得x>3;
解不等式组$\left\{\begin{array}{l}{x+1<0}\\{x-3<0}\end{array}\right.$,得x<-1,
所以原不等式的解集为x>3或x<-1.
问题解决:根据以上阅读材料,解不等式(2x-3)(1+3x)<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+2,-8,+5,+7,-8,+6,-7,+12.
(1)问收工时检修队在A地哪边?距A地多远?
(2)检修队从A地出发到收工后又回到A地,汽车共行驶多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某家庭农场要建一个长方形的养兔场,兔场的两边靠墙(两堵墙互相垂直,长度不限),另两边用木栏围成,木栏总长20米.
(1)兔场的面积能达到100平方米吗?请你给出设计方案;
(2)兔场的面积能达到110平方米吗?如能,请给出设计方案,若不能说明理由.

查看答案和解析>>

同步练习册答案