精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,点E在中线BD上,∠DAE=∠ABD.
求证:(1)AD2=DE•DB; 
      (2)∠DEC=∠ACB.
分析:(1)由∠DAE=∠ABD,∠ADE=∠BDA,根据有两角对应相等的三角形相似,可得△ADE∽△BDA,然后由相似三角形的对应边成比例,即可证得AD2=DE•DB;
(2)由点E在中线BD上,可得
DC
BD
=
DE
DC
,又由∠CDE=∠BDC,根据两组对应边的比相等且夹角对应相等的两个三角形相似,即可得△CDE∽△BDC,继而证得∠DEC=∠ACB.
解答:证明:(1)∵∠DAE=∠ABD,∠ADE=∠BDA,
∴△ADE∽△BDA.(2分)
AD
BD
=
DE
AD
,(2分) 
即AD2=DE•DB.(1分)

(2)∵D是AC边上的中点,
∴AD=DC.
AD
BD
=
DE
AD

DC
BD
=
DE
DC
,(2分)
又∵∠CDE=∠BDC.(1分)
∴△CDE∽△BDC.(2分)
∴∠DEC=∠ACB.(2分)
点评:此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案