精英家教网 > 初中数学 > 题目详情
2.如图,将?ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.
(1)求证:四边形ABEC是平行四边形;
(2)若AE=AD,求证:四边形ABEC是矩形.

分析 (1)根据平行四边形的性质得出AB=CD,AB∥CD,求出AB∥CE,AB=CE,根据平行四边形的判定得出即可;
(2)根据平行四边形的性质得出AD=BC,求出AE=BC,根据矩形的判定得出即可.

解答 证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵CE=CD,
∴AB∥CE,AB=CE,
∴四边形ABEC是平行四边形;

(2)∵四边形ABCD是平行四边形,
∴AD=BC,
∵AE=AD,
∴AE=BC,
∵由(1)知:四边形ABEC是平行四边形,
∴四边形ABEC是矩形.

点评 本题考查了平行四边形的性质和判定,矩形的判定的应用,能灵活运用定理进行推理是解此题的关键,注意:对角线相等的平行四边形是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.已知菱形ABCD的对角线AC,BD的长度是关于x的方程x2-14x+48=0的两个实数根,则此菱形的面积是(  )
A.20B.24C.48D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:7a$\sqrt{8a}$-4a2$\sqrt{\frac{1}{8a}}$+7a$\sqrt{2a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=$\frac{k}{x}$(x>0)的图象上,点D的坐标为(4,3).
(1)求k的值.
(2)若将菱形ABCD沿x轴正方向平移m个单位,
①当菱形的顶点B落在反比例函数的图象上,求m的值;
②在平移中,若反比例函数图象与菱形的边AD始终有交点,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知x=$\sqrt{2}$+2,求x2-4x+6的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在?ABCD中,AB⊥AC,AB=1,BC=$\sqrt{5}$,对角线AC,BD相交于O,将直线AC绕点O顺时针旋转,分别交BC,AD于E,F.
(1)求证:当旋转角为90°时,四边形ABEF是平行四边形.
(2)试说明在旋转过程中,线段AF与EC总保持相等.
(3)在旋转过程中,当EF⊥BD时,求出此时绕点O顺时针旋转的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知一条直线与直线y=-x+1平行,且经过点(8,2),则这条直线与两坐标轴围成的三角形的面积为50.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在平面直角坐标系中,O为坐标原点,抛物线y=ax2-5ax+4与x轴从左到右依次交于点A、B,交y轴于点C,点D在抛物线上,CD∥x轴,AD交y轴于点E,AC=CD.
(1)如图1,求a的值;
(2)如图2,点F在CD上方的抛物线上,过点F作FG∥y轴,交线段AD于点G,交线段CD于点H,若FG=CE,求点F的坐标;
(3)如图3,在(2)的条件下,连接DF,点P在第一象限内的抛物线上,点Q在CD下方的平面内,DQ⊥CD,∠QCP=∠ADF,若PC=PQ,求点P、Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知关于x、y的方程组$\left\{\begin{array}{l}{2x-y=m}\\{x-2y=2-m}\end{array}\right.$满足x<0且y<0,则m的取值范围是(  )
A.m>$\frac{4}{3}$B.m<$\frac{4}{3}$C.$\frac{2}{3}$<m<$\frac{4}{3}$D.m<$\frac{2}{3}$

查看答案和解析>>

同步练习册答案