精英家教网 > 初中数学 > 题目详情

【题目】嘉嘉参加机器人设计活动,需操控机器人在5×5的棋盘格上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1R2R2,其行经位置如图与表所示:

路径

编号

图例

行径位置

第一条路径

R1

A→C→D→B

第二条路径

R2

A→E→D→F→B

第三条路径

R3

A→G→B

已知A,B,C,D,E,F,G七点皆落在格线的交点上,且两点之间的路径皆为线段.

(1)分别计算出三条路径的长;

(2)最长的路径是______ (写出编号),最短的路径是 _______(写出编号).

【答案】1)路径R1的长等于=,路径R2的长等于=,路径R3的长等于=;(2R2R3.

【解析】

(1)利用勾股定理分别计算出三条路径的长即可;(2)利用(1)得出的结果,比较大小即可.

解:(1)第一条路径的长度为
第二条路径的长度为
第三条路径的长度为;

(2)(1)R1==,=,

=< R1=<=,

∴最长路径为;最短路径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+1x轴,y轴分别交于BA两点,动点P在线段AB上移动,以P为顶点作OPQ=45°x轴于点Q

1)求点A和点B的坐标;

2)比较AOPBPQ的大小,说明理由.

3)是否存在点P,使得OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将下列各数填入相应的集合内:

1.01001000122,-8,-1.232232223…,-1.4140

正数集合{     ……}

负数集合{     ……}

有理数集合{     ……}

无理数集合{          ……}

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+3经过点 B﹣10),C23),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t

1)求抛物线的表达式;

2)过点My轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)

3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;

4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点MON对应的数分别为-301,点P为数轴上任意一点,其对应的数为x

(1)如果点P到点M,点N的距离相等,那么x的值是______

(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.

(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中 过点A作AEDC,垂足为E,连接BE,F为BE上一点,且AFE=D.

(1)求证:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,EAD的中点,延长CEBA交于点F,连接ACDF

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BCCD的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.

(1)这次调查的市民人数为________人,m=________,n=________;

(2)补全条形统计图;

(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.

查看答案和解析>>

同步练习册答案