精英家教网 > 初中数学 > 题目详情
16.如图,已知∠BAE+∠AED=180°,∠1=∠2,那么∠F=∠G,为什么?
解:因为∠BAE+∠AED=180°(已知),
所以AB∥CD (已知)
所以∠BAE=∠AEC(同旁内角互补,两直线平行)
因为∠1=∠2(已知)
而∠BAE=∠FAE+∠1,∠AEC=∠GEA+∠2,
所以∠FAE=∠GEA (等式的性质)
所以AF∥EG (内错角相等,两直线平行)
所以∠F=∠G(两直线平行,内错角相等)

分析 先根据题意得出AB∥CD,故可得出∠BAE=∠AEC,再由∠1=∠2得出∠FAE=∠GEA,进而可得出AF∥EG,据此可得出结论.

解答 解:∵∠BAE+∠AED=180°( 已知  ),
∴AB∥CD(同旁内角互补,两直线平行),
∴∠BAE=∠AEC(两直线平行,内错角相等). 
∵∠1=∠2(已知),∠BAE=∠FAE+∠1,∠AEC=∠GEA+∠2,
∴∠FAE=∠GEA (等式的性质),
∴AF∥EG(内错角相等,两直线平行),
∴∠F=∠G(两直线平行,内错角相等).
故答案为:已知;同旁内角互补,两直线平;已知;等式的性质;内错角相等,两直线平行;两直线平行,内错角相等.

点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,⊙O是△ABC的外接圆,半径为R.已知BC=a,AC=b,AB=c.
(1)过点B作⊙O的直径BD,连接CD,若a=3,CD=4,请直接写出sinD的值,并求$\frac{a}{sinA}$-2R的值.
(2)类比(1)的解答过程,证明:$\frac{a}{sinA}$=$\frac{b}{sin∠ABC}$.
(3)由上述结论猜想在△ABC$;\\;中$中,a,b,c与三个内角的正弦函数值之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2-2b+3,若将实数对(x,-3x)放入其中,得到一个新数为5,则x=-3$±\sqrt{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.0.073861保留两个有效数字是0.074.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.
(1)如图1,当四边形EFGH为正方形时,求△GFC的面积;
(2)如图2,当四边形EFGH为菱形时,设BF=x,△GFC的面积为S,求S关于x的函数关系式,并写出函数的定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程或不等式(组)
(1)$\left\{\begin{array}{l}{3(x+y)-4(x-y)=4}\\{\frac{x+y}{2}+\frac{x-y}{6}=1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2(x+2)≤3x+3}\\{\frac{x}{3}<\frac{x+1}{4}}\end{array}\right.$ (并写出不等式的整数解)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在(ax+3y)与(x-y)的积中,不含有xy项,则a=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,已知AB∥CD,∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F=90°;
(2)请探索∠E与∠F之间满足的数量关系?说明理由;
(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程组$\left\{\begin{array}{l}{\sqrt{2}x+y=2}\\{4x-\sqrt{2}y=\sqrt{2}}\end{array}\right.$.

查看答案和解析>>

同步练习册答案