分析 先根据题意得出AB∥CD,故可得出∠BAE=∠AEC,再由∠1=∠2得出∠FAE=∠GEA,进而可得出AF∥EG,据此可得出结论.
解答 解:∵∠BAE+∠AED=180°( 已知 ),
∴AB∥CD(同旁内角互补,两直线平行),
∴∠BAE=∠AEC(两直线平行,内错角相等).
∵∠1=∠2(已知),∠BAE=∠FAE+∠1,∠AEC=∠GEA+∠2,
∴∠FAE=∠GEA (等式的性质),
∴AF∥EG(内错角相等,两直线平行),
∴∠F=∠G(两直线平行,内错角相等).
故答案为:已知;同旁内角互补,两直线平;已知;等式的性质;内错角相等,两直线平行;两直线平行,内错角相等.
点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com