精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+bx+c与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程x2-6x+5=0的两个实数根.
(1)求A、B两点的坐标;
(2)求出此抛物线的解析式及顶点D的坐标;
(3)求出此抛物线与x轴的另一个交点C的坐标;
(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标;若不存在,说明理由.
(1)∵x2-6x+5=0的两个实数根为x1=1,x2=5
OA、OB(OA<OB)的长是方程x2-6x+5=0的两个实数根
∴OA=1,OB=5
∴A(1,0),B(0,5)(2分)

(2)∵抛物线y=-x2+bx+c与x轴的一个交点是A,与y轴的交点是B
-1+b+c=0
c=5

解得:
b=-4
c=5

∴所求二次函数的解析式为:y=-x2-4x+5(3分)
顶点坐标为:D(-2,9)(4分)

(3)此抛物线与x轴的另一个交点C的坐标为(-5,0)(5分)

(4)直线CD的解析式为:
y=3x+15(6分)
直线BC的解析式为:
y=x+5(7分)
∵以CD为底,则OPCD
直线OP的解析式为:y=3x
于是有
y=x+5
y=3x

解得:
x=
5
2
y=
15
2

∴点P的坐标为(
5
2
15
2
)
(8分)
②若以OC为底,则DPCO
直线DP的解析式为:y=9
于是有
y=x+5
y=9

解得:
x=4
y=9

∴点P的坐标为(4,9)(9分)
∴在直线BC上存在点P,使四边形PDCO为梯形且P点坐标为(
5
2
15
2
)
或(4,9)(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:正方形ABCO的边长为3,过A(0,3)点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动.
(1)求直线AD的解析式;
(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;
(3)若动点从A点开始沿AD方向运动到达的位置为点P1,过P1作P1E⊥x轴,垂足为E,设四边形BCEP1的面积为S,请问S是否有最大值?若有,请求出P点坐标和S的最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c的图象经过(1,0)和(0,3)两点,它的部分图象如下图.
(1)求b、c的值;
(2)写出当y>0时,x的取值范围;
(3)求y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的关系解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QDAC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.
薄板的边长(cm)2030
出厂价(元/张)5070
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP=x,△ADP和矩形重叠部分(阴影)的面积为y.

(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;
(2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上这时重叠部分的面积y等于多少?
(3)阅读材料:已知锐角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα来表示,即tan2α=
2tanα
1-(tanα)2
(α≠45°).根据上述阅读材料,求出用x表示y的解析式,并指出x的取值范围.
(提示:在图丙中可设∠DAP=a)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为10米.当x等于多少米时,窗户的透光面积最大,最大面积是多少?

查看答案和解析>>

同步练习册答案