科目:初中数学 来源: 题型:
如图,在⊙O中, AB是⊙O直径,∠BAC=40°,C,D为⊙O上的两点,则∠ADC的度数是( ).
A.40° B.50° C.60° D.80°
查看答案和解析>>
科目:初中数学 来源: 题型:
有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=。 将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图(3),在三角板DEF;运动过程中,当EF经过点C时,∠FCB= 度;BF= ;
(2)如图(2)在三角板DEF运动过程中,EF与BC交于点M,过点M做MN⊥AB于点N,设BF=x,用x的代数式表示MN;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( )
| A. | y=(x+2)2+3 | B. | y=(x﹣2)2+3 | C. | y=(x+2)2﹣3 | D. | y=(x﹣2)2﹣3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线:与轴交于点A(-2,0)和B(4,0)、与轴交于点C.
(1)求抛物线的解析式;
(2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;
(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿轴同时出发相向而行.当点M到原点时,点Q立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式,并求出S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com