精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.
(1)求过A,B,C三点的抛物线的解析式;
(2)求点D的坐标;
(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.

【答案】分析:(1)已知了抛物线过A,B,C三点,可根据三点的坐标用待定系数法求出抛物线的解析式.
(2)由于CD是圆的切线,设圆心为O′,可连接O′C,在直角三角形O′CD中科根据射影定理求出OD的长,即可得出D的坐标.
(3)可假设存在这样的点E、F,设以线段EF为直径的圆的半径为|r|,那么可用半径|r|表示出E,F两点的坐标,然后根据E,F在抛物线上,将E,F的坐标代入抛物线的解析式中,可得出关于|r|的方程,如果方程无解则说明不存在这样的E,F点,如果方程有解,可用得出的r的值求出E,F两点的坐标.
解答:解:(1)令二次函数y=ax2+bx+c,


∴过A,B,C三点的抛物线的解析式为y=-x2-x+2.

(2)以AB为直径的圆的圆心坐标为O′(-,0),
∴O′C=
OO′=
∵CD为⊙O′切线
∴O′C⊥CD,
∴∠O′CO+∠OCD=90°,∠CO'O+∠O'CO=90°,
∴∠CO'O=∠DCO,
∴△O'CO∽△CDO,
=,即=
∴OD=
∴D坐标为(,0).

(3)存在,
抛物线对称轴为x=-
设满足条件的圆的半径为r,则E的坐标为(-+r,|r|)或F(--r,r),
而E点在抛物线y=-x2-x+2上,
∴r=-(-+r)2-(-+r)+2;
∴r1=-1+,r2=-1-(舍去);
故以EF为直径的圆,恰好与x轴相切,该圆的半径为
点评:本题着重考查了待定系数法求二次函数解析式、三角形相似、切线的性质等重要知识点,综合性强,考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案