精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.
分析:(1)根据矩形的对边相等表示出BC,然后表示出PB、QB,再根据三角形的面积列式整理即可得解,根据点Q先到达终点确定出x的取值范围即可;
(2)利用二次函数的最值问题解答.
解答:(1)解:∵四边形ABCD是矩形,
∴BC=AD=4,
根据题意,AP=2x,BQ=x,
∴PB=16-2x,
∵S△PBQ=
1
2
PB•QB,
∴y=-x2+8x,
∵点P的速度是2cm/s,点Q的速度是1cm/s,
∴点P到达终点的时间是16÷2=8秒,
点Q到达终点的时间是4÷1=4秒,
∵一点到达终点时,另一点也随之停止运动,
∴自变量取值范围:0<x≤4;

(2)∵y=-x2+8x=-(x-4)2+16,
∴当x=4时,y有最大值,最大值为16,
∴△PBQ的面积的最大值为16cm2
点评:本题考查了矩形的性质,二次函数的最值问题,主要利用了矩形的对边相等的性质,三角形的面积,用x表示出PB、QB是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案