精英家教网 > 初中数学 > 题目详情

如图甲所示,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,过A点作AG⊥BE,垂足为G,AG交BD于点F,则OE=OF,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,其他条件不变,如图乙所示,则OE=OF还成立吗?说明理由.

答案:
解析:

  解:OE=OF仍然成立.理由如下:

  因为四边形ABCD是正方形,

  所以∠BOE=∠AOF=90°,BO=AO.

  又因为AG⊥EB,

  所以∠OEB+∠EAF=90°=∠OFA+∠FAE.

  所以∠OEB=∠OFA.

  所以Rt△BOE≌Rt△AOF.

  所以OE=OF.

  分析:若能证明△BOE≌△AOF,则结论OE=OF成立,因此,证明△BOE≌△AOF是解题关键.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当t=
52
时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省衢州市江山二中九年级(上)第一次质量检测数学试卷(解析版) 题型:解答题

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

同步练习册答案