精英家教网 > 初中数学 > 题目详情
(12)观察下列各式:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5
,…
(1)用含有n(n为正整数)的式子表示上述过程中的规律
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1

(2)用你发现的规律解答下面问题:已知a,b是有理数,且|ab-2|与|b-1|互为相反数.
求 
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2011)(b+2011)
的值.
分析:(1)根据已知,用字母代替上面题中的分母,很容易得出规律.
(2)根据题目,先解出a、b的值,再将题目化成如已知中数的形式,就很好解决了.
解答:解:(1)由已知可得规律为
1
n(n+1)
=
1
n
-
1
n+1


(2)∵|ab-2|+|b-1|=0,
∴|ab-2|=0,|b-1|=0,
即ab=2,b=1,a=2,
代入式子
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2011)(b+2011)

=
1
1×2
+
1
2×3
+…+
1
2012×2013

=1-
1
2
+
1
2
-
1
3
+…+
1
2012
-
1
2013

=1-
1
2013

=
2012
2013

故答案为:
1
n(n+1)
=
1
n
-
1
n+1
点评:本题考查了规律型:数字的变化,得出
1
n(n+1)
=
1
n
-
1
n+1
,以及抵消法的运用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下列各式及验证过程:
1
2
(
1
3
-
1
4
)
=
1
3
3
8
验证:
1
2
(
1
3
-
1
4
)
=
1
2×3×4
=
3
32×4
=
1
3
3
8
1
3
(
1
4
-
1
5
)
=
1
4
4
15
验证:
1
3
(
1
4
-
1
5
)
=
1
3×4×5
=
4
42×5
=
1
4
4
15

(1)按照上述两个等式及其验证过程的基本思路,猜想
1
4
(
1
5
-
1
6
)
的变形结果并进行验证;
(2)针对上述各式反映的规律,写出用n(n为大于等于2的整数)表示的等式,并进行验证.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列各式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

(1)根据以上式子填空:
1
8×9
=
 
;  ②
1
n×(n+1)
=
 
(n是正整数)
(2)根据以上式子及你所发现的规律计算:
1
1×2
+
1
2×3
+
1
3×4
…+
1
2007×2008
+
1
2008×2009

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列各式:①4=22;②4+12=42;③4+12+20=62;④4+12+20+28=82;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)2
4+12+20+28+36+…+(2n-1)×4=(2n)2

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)观察下列各式:
1
2
=
1
1×2
=
1
1
-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
1
20
=
1
4×5
=
1
4
-
1
5
,…
由此可以推测:
1
56
=
1
7×8
=
1
7
-
1
8
1
7×8
=
1
7
-
1
8
1
72
=
1
8×9
=
1
8
-
1
9
1
8×9
=
1
8
-
1
9

(2)用含字母n(n为正整数)的等式表示(1)中的一般规律:
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1

(3)请用(2)中的规律计算:
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+3)(a+4)

查看答案和解析>>

同步练习册答案