精英家教网 > 初中数学 > 题目详情
如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是               
y=-2x
首先将点P的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解.
解:∵正比例函数图象与一次函数y=-x+1的图象相交于点P,P点的纵坐标为2,
∴2=-x+1
解得:x=-1
∴点P的坐标为(-1,2),
∴设正比例函数的解析式为y=kx,
∴2=-k
解得:k=-2
∴正比例函数的解析式为:y=-2x,
故答案为:y=-2x
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.

(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).

(1)求点C的坐标;
(2)当0<t<5时,求S与t之间的函数关系式,并求S的最大值;
(3)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△,连结.若∠ACB=30°,AB=2, =x,四边形的面积为S.
(1)线段的长度最小值是_____,此时x=" _____"
(2)当x为何时,四边形是菱形?并说明理由;
(3)求S与x的函数关系式,并在直角坐标系中画出这个函数的图象

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地之间的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;
(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知抛物线,直线,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.

下列给出四个说法:
①当x>0时,y1<y2; 
②当x<0时,x值越大,M值越大;
③使得M大于2的x值不存在;
④使得M=1的x值是.
说法正确的个数是
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=x+2的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以两条直线l1,l2的交点坐标为解的方程组是
A.B.C.D.

查看答案和解析>>

同步练习册答案