精英家教网 > 初中数学 > 题目详情
16.计算$(2\sqrt{2}+3\sqrt{3})^{2}$的结果等于35+12$\sqrt{6}$.

分析 利用完全平方公式计算.

解答 解:原式=8+12$\sqrt{6}$+27
=35+12$\sqrt{6}$.
故答案为35+12$\sqrt{6}$.

点评 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,AB为⊙O的直径,C、D为⊙O上的两点,且D为弧AC的中点,过点D作EF∥AC分别交直线AB,BC于点E、F,AC=6,BD=5.
(1)求证:EF为⊙O的切线;
(2)求cos∠DAC;
(3)求线段CB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点P从点A出发沿边AC向点C以每秒1个单位长度的速度运动,同时点Q从点C出发沿边CB向点B以每秒a个单位长度的速度运动,过点P作PD⊥BC,交AB于点D,连接PQ.当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)当a=2时,解答下列问题:
①QB=8-2t,PD=$\frac{4}{3}$t.(用含t的代数式分别表示)
②通过计算说明,不存在t的值使得四边形PDBQ为菱形.
(2)当a为某个数值时,四边形PDBQ在某一时刻为菱形,求a的值及四边形PDBQ为菱形时t的值.
(3)当t=2时,在整个运动过程中,恰好存在线段PQ的中点M到△ABC三边距离相等,直接写出此刻a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:$\sqrt{48}$-2×$\sqrt{\frac{27}{4}}$+($\frac{1}{2}$)-1+(π-2017)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,△ABC中,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列各式计算正确的是(  )
A.x2•x3=x6B.2x+3x=5x2C.x6÷x2=x3D.(x23=x6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF.将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).
(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;
(2)求y关于t的函数解析式及相应t的取值范围;
(3)当y取最大值时,求sin∠NEF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列命题中正确的是(  )
A.正五边形是中心对称图形
B.平分弦的直径垂直于弦
C.化简-a$\sqrt{-\frac{1}{a}}$的结果是$\sqrt{-a}$
D.顺次连接对角线互相垂直的四边形各边中点所得的四边形是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在平面直角坐标系中,反比例函数y=$\frac{k}{x}$(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是(  )
A.6$\sqrt{2}$B.10C.2$\sqrt{26}$D.2$\sqrt{29}$

查看答案和解析>>

同步练习册答案