精英家教网 > 初中数学 > 题目详情
已知:如图正方形ABCD,E是BC的中点,F在AB上,且BF=,猜想EF与DE的位置关系,并说明理由.
证明见解析.

试题分析:由四边形ABCD是正方形,可得∠B=∠C=90°,AB=BC=CD,又由E是BC的中点,F在AB上,且BF=AB,即可证得,然后由两组对应边的比相等且夹角对应相等的两个三角形相似,即可证得△BEF∽△CDE,继而可求得∠DEF=90°,即可证得EF⊥DE.
试题解析:EF⊥DE.理由:
∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵E是BC的中点,BF=AB,
∴BE=EC=BC,
∴BF=EC,BE=CD,

∴△BEF∽△CDE,
∴∠BEF=∠CDE,
∵∠CDE+∠CED=90°,
∴∠BEF+∠CED=90°,
∴∠DEF=90°,即EF⊥DE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

将一副三角板如图叠放,如OB=,则OD=       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.
(1)如图1,当点M在BC上时,求证:BD-2DE=BM;
(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是        
(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=,且AF:FD=1:2时,求线段DG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.

(1)求证:△BDG∽△DEG;
(2)若EG·BG=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由点A出发沿AC方向向点C匀速运动,速度为2cm/s;连结PQ。若设运动时间为t(s)(0<t<2),解答下列问题:

(1)当t为何值时?PQ//BC?
(2)设△APQ的面积为y(cm2),求y与t之间的函数关系?
(3)是否存在某一时刻t,使线段PQ恰好把△ABC的周长和面积同时平分?若存在求出此时t的值;若不存在,说明理由。
(4)如图2,连结PC,并把△PQC沿AC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?若存在求出此时t的值;若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,□ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC长为          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是(  )
A.(6,0)B.(6,3)
C.(6,5)D.(4,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知△ABC与△DEF相似且面积比为4∶25,则△ABC与△DEF的相似比为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果两个相似三角形周长的比是2:3,那么它们面积的比是_______。

查看答案和解析>>

同步练习册答案