精英家教网 > 初中数学 > 题目详情

【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有两个互异实根.
其中正确结论的个数是(

A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1, ∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.
∴当x=﹣1时,y>0,
即a﹣b+c>0,所以①正确;
∵抛物线的对称轴为直线x=﹣ =1,即b=﹣2a,
∴3a+b=3a﹣2a=a,所以②错误;
∵抛物线的顶点坐标为(1,n),
=n,
∴b2=4ac﹣4an=4a(c﹣n),所以③正确;
∵抛物线与直线y=n有一个公共点,
∴抛物线与直线y=n﹣1有2个公共点,
∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.
故选C.
【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c),以及对抛物线与坐标轴的交点的理解,了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着科技的发展,电动汽车的性能得到显著提高,某市对市场上电动汽车的性能进行随机抽样调查,现随机抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据绘制成如下频数分布直方表和条形统计图.
根据以上信息回答下列问题:

组别

行驶里程x(千米)

频数(台)

频率

A

x<200

18

0.15

B

200≤x<210

36

a

C

210≤x<220

30

0.25

D

220≤x<230

b

0.20

E

x≥230

12

0.10

根据以上信息回答下列问题:
(1)填空:a= , b=
(2)请将条形统计图补充完整;
(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,动点P从点B出发,沿BCCDDA运动至点A停止.设点P运动的路程为x△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是 ( )

A. 10B. 16C. 18D. 20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOC与∠BOD都是直角,则下列说法正确的是(  )

①若∠COD=30°,则∠AOB=150°

②∠BOC=AOB﹣BOD

③∠AOD=BOC

④∠AOB与∠DOC的和不变

⑤∠AOB与∠DOC的和随∠DOC的变小而增大.

A. ①③④ B. ①②③④ C. ①③⑤ D. ①②③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为线段上一动点,分别过点,连接.已知,设.

(1)用含的代数式表示的值;

(2)探究:当点满足什么条件时,的值最小?最小值是多少?

(3)根据(2)中的结论,请构造图形求代数式的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得
(Ⅱ)解不等式②,得
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,O(0,0),A(7,0),B(5,2),C(0,2)一条动直线l分别与BCOA交于 EF,且将四边形OABC分为面积相等的两部分,则点C到动直线l的距离的最大值为____,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,假设航空母舰始终以200千米/时的速度由西向东航行,飞机以800千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行3个小时,那么它在起飞_____小时后就必须返航,才能安全停在舰上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处。
1)求证:四边形AECF是平行四边形;
2)若AB=6AC=10,求四边形AECF的面积。

查看答案和解析>>

同步练习册答案